Eliminasi Gauss dan Contoh Penerapannya

Eliminasi Gauss

Siapa itu Gauss?

 

Carl Friedrich Gauss
Sumber : https://www.britannica.com/biography/Carl-Friedrich-Gauss

Carl Friedrich Gauss (1777-1855) adalah seorang matematikawan berkebangsaan Jerman yang mempunyai kontribusi besar didalam bidang geometri, teori bilangan, teori fungsi dan teori probabilitas. Dia menemukan cara untuk menghitung lintasan asteroid, membuat penemuan dasar di dalam teori potensial (bidang elektromagnetik), dan orang pertama yang menggunakan telegraf (1833). Karena konstribusinya itu, dia mempunyai julukan “Prince of Mathematics”.

\(\text{Disarankan sudah membaca :}\)

Eliminasi Gauss

Eliminasi gauss ditemukan oleh Carl Friedrich Gauss, metode ini dapat dimanfaatkan untuk memecahkan sistem persamaan linear dengan merepresentasikan (mengubah) menjadi bentuk matriks, matriks tersebut lalu diubah kebentuk Eselon Baris melalui Operasi Baris Elementer. Kemudian sistem diselesaikan dengan substitusi balik.

Lalu apa itu eselon baris? dan bagaimana bentuknya?

Bentuk Eselon Baris

Suatu matriks memiliki bentuk eselon baris jika memenuhi 3 kriteria berikut :

  1. Jika didalam baris terdapat elemen-elemen yang tidak semuanya nol, maka bilangan tak nol pertama di dalam baris tersebut adalah 1.

    Contoh : (Perhatikan setiap baris pada matriks berikut)

    $$\left[\begin{array}{cccc}\color{red}{1}&\color{red}{4}&\color{red}{0}&\color{red}{2}\\\color{blue}{0}&\color{blue}{0}&\color{blue}{-1}&\color{blue}{2}\\\color{green}{0}&\color{green}{0}&\color{green}{0}&\color{green}{1}\end{array}\right]$$

    Dari matriks diatas baris merah dan baris hijau memenuhi kriteria pertama, karena elemen-elemen pada baris merah atau hijau tidak semuanya nol dan bilangan (elemen) bukan nol pertama (dari kiri) di dalam baris tersebut adalah 1. Sedangkan pada baris biru tidak memenuhi kriteria pertama sebab bilangan (elemen) bukan nol pertama (dari kiri) bukan bernilai 1, melainkan bernilai -1.

  2. Nah kalau ada baris-baris yang semua elemennya  bernilai 0 semua, maka baris-baris tersebut harus dikelompokkan dan diletakkan dibagian bawah matriks.

    Contoh :

    $$\left[\begin{array}{cccc}\color{red}{0}&\color{red}{0}&\color{red}{0}&\color{red}{0}\\\color{red}{0}&\color{red}{0}&\color{red}{1}&\color{red}{-1}\\\color{red}{0}&\color{red}{0}&\color{red}{0}&\color{red}{0}\end{array}\right],~\left[\begin{array}{ccc}\color{blue}{-2}&\color{blue}{3}&\color{blue}{0}\\\color{blue}{0}&\color{blue}{1}&\color{blue}{-1}\\\color{blue}{0}&\color{blue}{0}&\color{blue}{0}\end{array}\right]$$

    Dari contoh diatas, matriks dengan elemen berwarna biru memenuhi kriteria kedua sebab terdapat baris yang semua elemennya 0 dan baris tersebut diletakkan di bagian bawah matriks. Sedangkan pada matriks berwarna merah, masih belum memenuhi kriteria kedua, sebab walaupun terdapat baris dengan elemen-elemennya 0, namun baris-baris tersebut tidak dikelompokkan dan tidak diletakkan di bagian bawah matriks tersebut. Pada matriks merah agar memenuhi kriteria kedua seharusnya :

    $$\left[\begin{array}{cccc}\color{red}{0}&\color{red}{0}&\color{red}{1}&\color{red}{-1}\\\color{red}{0}&\color{red}{0}&\color{red}{0}&\color{red}{0}\\\color{red}{0}&\color{red}{0}&\color{red}{0}&\color{red}{0}\end{array}\right]$$

  3. Jika terdapat dua baris berurutan yang memenuhi kriteria pertama, maka angka 1 (pertama/utama) dari baris yang lebih rendah berada lebih kekanan dari angka 1(pertama/utama) baris yang diatasnya.

    Contoh :

    $$\left[\begin{array}{cccc}\color{green}{1}&\color{green}{-2}&\color{green}{1}&\color{green}{2}\\\color{green}{0}&\color{green}{0}&\color{green}{1}&\color{green}{1}\\\color{green}{0}&\color{green}{0}&\color{green}{0}&\color{green}{0}\end{array}\right],~\left[\begin{array}{ccc}\color{blue}{1}&\color{blue}{3}&\color{blue}{0}\\\color{blue}{0}&\color{blue}{1}&\color{blue}{-1}\\\color{blue}{0}&\color{blue}{1}&\color{blue}{-3}\end{array}\right]$$

    Pada matriks hijau sudah memenuhi kriteria ketiga, karena jelas angka 1 pertama (dari kiri) pada baris yang lebih rendah letaknya lebih kekanan dari angka 1 pertama dari baris yang diatasnya.

    Syarat Bentuk Eselon Baris

    Sedangkan pada matriks biru belum memenuhi sebab terdapat dua baris berurutan yang melanggar kriteria ketiga yaitu baris ke 2 dan 3. Dimana angka 1 pertama baris ketiga terletak tepat di bawah angka 1 pertama baris kedua.

    Syarat Bentuk Eselon Baris

Setelah memahami ketiga kriteria (syarat) dari bentuk eselon baris. Berikut contoh matriks yang mempunyai bentuk eselon baris (memenuhi ketiga kriteria sekaligus).

$$\left[\begin{array}{ccc}1&-1&2\\0&1&9 \\0&0&1\end{array}\right],~\left[\begin{array}{cccc}1&5&1&0\\0&0&1&0 \\0&0&0&0\end{array}\right],~\left[\begin{array}{ccccc}0&1&2&0&0\\0&0&1&0&0 \\0&0&0&0&1\end{array}\right]$$

Selanjutnya kita akan menerapkan metode eliminasi gauss dan subtitusi balik untuk memecahkan suatu sistem persamaan linear dengan operasi baris elementer. Disarankan sudah memahami penggunaan operasi baris elementer untuk pemecahan sistem persamaan linear.

Pemecahan SPL dengan Eliminasi Gauss

Ilustrasi Eliminasi Gauss

Gambaran diatas merupakan ilustrasi proses pemecahan Sistem Persamaan Linear (SPL), dimana urutan langkah-langkahnya dinamakan “Eliminasi Gauss” dan operasi yang dilakukan dinamakan “Operasi Baris Elementer (OBE)” dimana eliminasi gauss ini bertujuan membentuk Eselon Baris.

Catatan : Pada proses pemecahan dengan metode eliminasi gauss pada umumnya memiliki macam-macam jalur atau alur operasi yang dilakukan, misalkan pada langkah awal bisa saja kita menemukan beberapa operasi alternatif dan kita bebas memilihnya. Karena terdapat banyak jalur atau alur operasinya maka jika anda mencoba dengan jalur lain (tidak seperti di contoh) kemungkinan anda akan menemukan bentuk sistem/matriks yang berbeda. Namun jangan khawatir selama operasi yang dilakukan menggunakan Operasi Baris Elementer dan dilakukan secara teliti, maka solusi(pemecahan) yang didapat akan sama dan itu merupakan hal yang wajar.

Contoh 1 (Solusi Tunggal)

Diberikan sistem persamaan linear sebagai berikut :

\(2x+5y+3z =1\)
\(3x+4y+2z=-3\)
\(x+3y+z=2\)

Perintah : Tentukan pemecahan sistem persamaan linear di atas dengan  metode eliminasi gauss.

Penyelesaian :

Mula-mula kita representasikan sistem tersebut kedalam bentuk matriks.

$$\left[{\begin{array}{ccc}2&5&3\\3&4&2\\1&3&1\end{array}}\right|\left.{\begin{array}{c}1\\-3\\2\end{array}}\right]$$

Langkah 1

Kita akan membuat 1 pertama pada baris pertama dengan beberapa pilihan operasi :

  1. Kita bisa menukar baris ke-1 dengan baris ke-3, dinotasikan \(R_{1} \leftrightarrow R_{3}\)
  2. Dengan mengganti baris ke-1 dengan hasil kali baris ke-1 dengan \(\frac{1}{2}\) dinotasikan : \(\frac{1}{2}R_{1} \rightarrow R_{1}\)

Dari dua pilihan diatas kita bebas memilihnya, namun kita akan menggunakan pilihan yang pertama yaitu \(R_{1} \leftrightarrow R_{3}\) sehingga didapat :

$$\left[{\begin{array}{ccc}2&5&3\\3&4&2\\1&3&1\end{array}}\right|\left.{\begin{array}{c}1\\-3\\2\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&3&1\\3&4&2\\2&5&3\end{array}}\right|\left.{\begin{array}{c}2\\-3\\1\end{array}}\right]$$

Langkah 2

Selanjutnya kita akan menyederhanakan bentuk baris ke-2 dan ke-3 sekaligus yaitu dengan operasi \(-3R_{1}+R_{2}\leftarrow R_{2}\) sehingga didapat :

$$\left[{\begin{array}{ccc}1&3&1\\3&4&2\\2&5&3\end{array}}\right|\left.{\begin{array}{c}2\\-3\\1\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&3&1\\0&-5&-1\\2&5&3\end{array}}\right|\left.{\begin{array}{c}2\\-9\\1\end{array}}\right]$$

Kemudian dilanjut dengan operasi \(-2R_{1}+R_{3}\rightarrow R_{3}\)

\(\left[{\begin{array}{ccc}1&3&1\\0&-5&-1\\2&5&3\end{array}}\right|\left.{\begin{array}{c}2\\-9\\1\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&3&1\\0&-5&-1\\0&-1&1\end{array}}\right|\left.{\begin{array}{c}2\\-9\\-3\end{array}}\right]\)

Langkah 3

Kita akan membuat 1 pertama pada baris kedua dengan operasi \(-6R_{3}+R_{2}\rightarrow R_{2}\) dan diperoleh :

$$\left[{\begin{array}{ccc}1&3&1\\0&-5&-1\\0&-1&1\end{array}}\right|\left.{\begin{array}{c}2\\-9\\-3\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&3&1\\0&1&-7\\0&-1&1\end{array}}\right|\left.{\begin{array}{c}2\\9\\-3\end{array}}\right]$$

Langkah 4

Kita akan menyederhanakan lagi baris ke-3 dengan operasi \(1R_{2}+R_{3}\rightarrow R_{3}\)

$$\left[{\begin{array}{ccc}1&3&1\\0&1&-7\\0&-1&1\end{array}}\right|\left.{\begin{array}{c}2\\9\\-3\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&3&1\\0&1&-7\\0&0&-6\end{array}}\right|\left.{\begin{array}{c}2\\9\\6\end{array}}\right]$$

Langkah 5

Selanjutnya kita akan membentuk 1 pertama pada baris ke-3 dengan operasi \(-\frac{1}{6}R_{3}\rightarrow R_{3}\)

$$\left[{\begin{array}{ccc}1&3&1\\0&1&-7\\0&0&-6\end{array}}\right|\left.{\begin{array}{c}2\\9\\6\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&3&1\\0&1&-7\\0&0&1\end{array}}\right|\left.{\begin{array}{c}2\\9\\-1\end{array}}\right]$$

Dari matriks terakhir tersebut sudah memenuhi ketiga kriteria bentuk eselon baris. Selanjutnya tinggal mengubahnya kembali menjadi sistem persamaan linear :

$$\left[{\begin{array}{ccc}1&3&1\\0&1&-7\\0&0&1\end{array}}\right|\left.{\begin{array}{c}2\\9\\-1\end{array}}\right]\rightarrow \begin{array}{c}x+3y+z=2\dots\text{(1)}\\y-7z=9\dots\text{(2)}\\z=-1\dots\text{(3)}\end{array}$$

Kita dapat memulai dengan mensubstitusikan persamaan (3) ke persamaan (2) sehingga didapat :

$$y-7z=9$$

$$\Leftrightarrow y=9+7z=9+7(-1)=2$$

Kemudian nilai dari \(y\) dan \(z\) juga kita substitusikan ke persamaan (1) dan kita dapatkan :

$$x+3y+z=2$$

$$\Leftrightarrow x=2-3y-z$$

$$\Leftrightarrow x=2-3(2)-(-1)=-3$$

Jadi didapat solusi tunggal yaitu \(x=-3, y=2\) dan \(z=-1\).

Contoh 2 (Banyak Solusi)

Diberikan sistem persamaan linear sebagai berikut :

\(2x+10y+4z =-2\)
\(x+4y+5z=-3\)
\(3x+15y+6z=-3\)

Perintah : Tentukan pemecahan sistem persamaan linear di atas dengan  metode eliminasi gauss.

Penyelesaian :

Kita representasikan kedalam bentuk matriks :

$$\left[{\begin{array}{ccc}2&10&4\\1&4&5\\3&15&6\end{array}}\right|\left.{\begin{array}{c}-2\\-3\\-3\end{array}}\right]$$

Langkah 1

Kita buat 1 pertama pada baris pertama dengan pilihan :

  1. Dengan menukar baris ke-1 dengan baris ke-2, dinotasikan : \(R_{1} \leftrightarrow R_{2} \)
  2. Dengan mengganti baris ke-1 dengan hasil kali baris ke-1 dengan \(\frac{1}{2}\), dinotasikan : \(\frac{1}{2}R_{1} \rightarrow R_{1}\)

Kita pilih opsi kedua yaitu menggunakan operasi \(\frac{1}{2}R_{1} \rightarrow R_{1}\) sehingga kita peroleh :

$$\left[{\begin{array}{ccc}2&10&4\\1&4&5\\3&15&6\end{array}}\right|\left.{\begin{array}{c}-2\\-3\\-3\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&5&2\\1&4&5\\3&15&6\end{array}}\right|\left.{\begin{array}{c}-1\\-3\\-3\end{array}}\right]$$

Langkah 2

Kita sederhanakan baris ke-2 dengan operasi \(-1R_{1}+R_{2}\rightarrow R_{2}\)

$$\left[{\begin{array}{ccc}1&5&2\\1&4&5\\3&15&6\end{array}}\right|\left.{\begin{array}{c}-1\\-3\\-3\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&5&2\\0&-1&3\\3&15&6\end{array}}\right|\left.{\begin{array}{c}-1\\-2\\-3\end{array}}\right]$$

Dilanjut penyederhanaan baris ke-3 dengan operasi \(-3R_{1}+R_{3}\rightarrow R_{3}\)

$$\left[{\begin{array}{ccc}1&5&2\\0&-1&3\\3&15&6\end{array}}\right|\left.{\begin{array}{c}-1\\-2\\-3\end{array}}\right]\rightarrow \left[{\begin{array}{ccc}1&5&2\\0&-1&3\\0&0&0\end{array}}\right|\left.{\begin{array}{c}-1\\-2\\0\end{array}}\right]$$

Langkah 3

Kita buat 1 pertama pada baris ke-2 dengan operasi \(-1R_{2}\rightarrow R_{2}\)

$$\left[{\begin{array}{ccc}1&5&2\\0&-1&3\\0&0&0\end{array}}\right|\left.{\begin{array}{c}-1\\-2\\0\end{array}}\right]\rightarrow \left[{\begin{array}{ccc}1&5&2\\0&1&-3\\0&0&0\end{array}}\right|\left.{\begin{array}{c}-1\\2\\0\end{array}}\right]$$

Matriks terakhir sudah memenuhi bentuk eselon baris sehingga selanjutnya menggunakan metode substitusi balik, namun sebelumnya kita harus mengubahnya kembali menjadi bentuk sistem persamaan linear.

$$\left[{\begin{array}{ccc}1&5&2\\0&1&-3\\0&0&0\end{array}}\right|\left.{\begin{array}{c}-1\\2\\0\end{array}}\right]\rightarrow\begin{array}{c}x+5y+2z=-1\dots(1)\\y-3z=2\dots(2)\end{array}$$

Perhatikan persamaan (2) :

$$y-3z=2\Leftrightarrow y=2+3z$$

Subtitusikan ke persamaan (1) dan diperoleh :

$$x+5y+2z=-1$$

$$\Leftrightarrow x=-1-5y-2z$$

$$\Leftrightarrow x=-1-5(2+3z)-2z$$

$$\Leftrightarrow x=-1-10-15z-2z$$

$$\Leftrightarrow x=-11-17z$$

Jelaslah pemecahannya banyak karena nilai dari \(z\) sendiri mempunyai tak terhingga banyaknya kemungkinan. Jadi himpunan penyelesaiannya yaitu :

$$\text{HP}=\{(x,y,z)\mid x=-11-17z,~y=2+3z,~\forall~\text{sebarang bilangan}~z\}$$

Contoh 3 (Tidak Punya Solusi)

Diberikan sistem persamaan linear sebagai berikut :

\(3x+12y+15z=6\)
\(2x+8y+10z=-6\)
\(4x+5y-6z =-2\)

Perintah : Tentukan pemecahan (bila ada) dari sistem persamaan linear di atas dengan  metode eliminasi gauss.

Penyelesaian :

Seperti biasa kita representasikan dulu ke dalam bentuk matriks.

$$\left[{\begin{array}{ccc}3&12&15\\2&8&10\\4&5&-6\end{array}}\right|\left.{\begin{array}{c}6\\-6\\-2\end{array}}\right]$$

Langkah 1

Kita buat 1 pertama pada baris pertama dengan operasi \(\frac{1}{3}R_{1} \rightarrow R_{1}\)

$$\left[{\begin{array}{ccc}3&12&15\\2&8&10\\4&5&-6\end{array}}\right|\left.{\begin{array}{c}6\\-6\\-2\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&4&5\\2&8&10\\4&5&-6\end{array}}\right|\left.{\begin{array}{c}2\\-6\\-2\end{array}}\right]$$

Langkah 2

Selanjutnya kita sederhanakan baris ke-2 dengan operasi \(-2R_{1}+R_{2}\rightarrow R_{2}\) dan diperoleh :

$$\left[{\begin{array}{ccc}1&4&5\\2&8&10\\4&5&-6\end{array}}\right|\left.{\begin{array}{c}2\\-6\\-2\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&4&5\\0&0&0\\4&5&-6\end{array}}\right|\left.{\begin{array}{c}2\\-10\\-2\end{array}}\right]$$

Perhatikan matriks terakhir diatas, kita coba ubah kembali menjadi bentuk sistem persamaan linear.

$$\left[{\begin{array}{ccc}1&4&5\\0&0&0\\4&5&-6\end{array}}\right|\left.{\begin{array}{c}2\\-10\\-2\end{array}}\right]\rightarrow\begin{array}{c}x+4y+5z=2\dots(1)\\(0)x+(0)y+(0)z=-10\dots(2)\\4x+5y-6z=-2\dots(3)\end{array}$$

Kita tahu untuk sembarang bilangan \(x, y, z\) bila dikalikan 0 akan menghasilkan 0 sehingga :

$$(0)x+(0)y+(0)z =0$$

Karena kontradiksi (berlawanan) dengan pernyataan persamaan (2), akibatnya persamaan (2) tidak mempunyai solusi. Karena persamaan (2) bagian dari sistem persamaan linear tersebut maka sistem persamaan linear tersebut juga tidak punya solusi.

Mengingat kembali jika sistem persamaan linear awal (pada soal) dikenakan operasi baris elementer maka akan menghasilkan sistem persamaan linear baru yang memiliki pemecahan yang sama. Baca kembali : Pemecahan Sistem Persamaan Linear dengan Operasi Baris Elementer.

Sehingga jika sistem persamaan linear baru tidak mempunyai solusi maka sistem persamaan linear awal (pada soal) juga tidak mempunyai solusi.

\(\text{Selanjutnya :}\) Eliminasi Gauss Jordan dan Contoh Penerapannya

4 Comments

  1. Prof, dasarannya pada saat penyederhanaan barisan itu apa? Saya amati di beda soal beda cara penyederhanaan, mohon penjelasannya prof.

Tinggalkan Balasan

Alamat email anda tidak akan dipublikasikan. Required fields are marked *