Sistem Persamaan Linear Homogen dan Sifatnya

Sistem Persamaan Linear Homogen

Definisi Sistem Persamaan Linear Homogen

Suatu sistem persamaan linear disebut homogen jika konstantanya bernilai 0. Disini kita membedakan konstanta dan koefisien, dimana konstanta pada umumnya berada pada ruas kanan persamaan sedangkan koefisien “berdampingan” dengan variabel.

Pada umumnya suatu sistem persamaan linear dapat dituliskan :

$$a_{11}x_{1}+a_{12}x_{2}+\dots+a_{1n}x_{n} =b_{1}$$
$$a_{21}x_{1}+a_{22}x_{2}+\dots+a_{2n}x_{n} =b_{2}$$

$$\vdots$$

$$a_{m1}x_{1}+a_{m2}x_{2}+\dots+a_{mn}x_{n} =b_{m}$$

Dengan \(a_{ij}\) menyatakan koefisien, \(x_{j}\) menyatakan variabel dan \(b_{i}\)menyatakan konstanta untuk setiap \(i=\{1,2,3,\dots,m\}~\text{dan}~j=\{1,2,3,\dots,n\}\). SPL tersebut dinyatakan homogen jika \(b_{i}=0\) atau dapat ditulis kembali :

$$a_{11}x_{1}+a_{12}x_{2}+\dots+a_{1n}x_{n} =0$$
$$a_{21}x_{1}+a_{22}x_{2}+\dots+a_{2n}x_{n} =0$$

$$\vdots$$

$$a_{m1}x_{1}+a_{m2}x_{2}+\dots+a_{mn}x_{n} =0$$

Contoh 1 :

$$5x_{1} -2x_{2} +x_{3} -3x_{4}=0$$

$$2x_{1} + x_{2} -x_{3} -7x_{4}=0$$

$$2x_{2} – 3x_{3} =0$$

$$3x_{2} +4x_{3} +x_{4}=0$$

Bisakah anda mencari solusi dari SPL diatas tanpa menggunakan metode Operasi Baris Elementer ?

Contoh 2 :

$$3x+y-z=0$$

$$5x-2y+z=0$$

$$2x+3y+2=0$$

Pada contoh kedua, sistem tersebut tidak bersifat homogen, sebab jika kita perhatikan pada persamaan ketiga terdapat konstanta yang bernilai tidak nol melainkan bernilai 2.

Teorema 1 (Sistem Persamaan Linear Homogen bersifat Konsisten)

Suatu sistem persamaan linear homogen bersifat konsisten karena terdapat satu solusi yang diperoleh dengan mengatur setiap variabel bernilai nol.

Bukti :

Atur setiap variabel bernilai nol, maka ketika kita menggantikan nilai variabel pada setiap persamaan, maka ruas kiri akan menghasilkan nol, tak peduli apapun koefisiennya. Kemudian karena sistem persamaan linear homogen mempunyai konstanta di ruas kanan bernilai nol akibatnya setiap persamaan bernilai benar dan karena setidaknya mempunyai satu solusi (semua variabel bernilai nol) maka sistem persamaan linear homogen bersifat konsisten.

Definisi Solusi Trivial dalam SPL Homogen

Dikutip dari halaman wikipedia arti kata trivial merupakan hal yang sepele, biasa dan tidak penting. Jadi dapat dikatakan solusi trivial merupakan solusi yang “biasa-biasa saja” bukan hal yang istimewa.

Definisi :

Misalkan terdapat sistem persamaan linear homogen dengan \(n\) variabel. Maka solusi dengan \(x_{1}=0,~x_{2}=0,~x_{3}=0,\dots,x_{n}=0\) disebut juga solusi trivial.

Teorema 2 (SPL Homogen dengan Variabel > Persamaan)

Misalkan terdapat suatu persamaan linear homogen mempunyai \(m\) persamaan dan \(n\) variabel dengan \(n > m\). Maka sistem tersebut mempunyai tak hingga banyaknya solusi.

Untuk bukti lengkapnya anda bisa baca di : http://linear.ups.edu/html/section-HSE.html

Contoh dari teorema 2 :

\(2x +3y +4z =0\)
\(3x -2z =0\)

Dari sistem di atas terdapat 2 persamaan dan 3 variabel. Selanjutnya kita akan mengecek apakah benar sistem tersebut mempunyai tak hingga banyaknya solusi ?

Kita akan mengeceknya menggunakan metode eliminasi gauss-jordan dengan Operasi Baris Elementer.

Langkah 1

Kita representasikan kedalam bentuk matriks :

$$\left[{\begin{array}{ccc}2&3&4\\3&0&-2\end{array}}\right|\left.{\begin{array}{c}0\\0\end{array}}\right]$$

Langkah 2

Kita buat 1 utama pada baris pertama dengan operasi \(\frac{1}{2}R_{1} \rightarrow R_{1}\), sehingga kita peroleh :

$$\left[{\begin{array}{ccc}2&3&4\\3&0&-2\end{array}}\left|{\begin{array}{c}0\\0\end{array}}\right.\right]\rightarrow \left[{\begin{array}{ccc}1&\frac{3}{2}&2\\3&0&-2\end{array}}\left|{\begin{array}{c}0\\0\end{array}}\right.\right]$$

Langkah 3

Kita sederhanakan baris kedua dengan operasi \(-3R_{1} +R_{2} \rightarrow R_{2}\) dan didapat :

$$\left[{\begin{array}{ccc}1&\frac{3}{2}&2\\3&0&-2\end{array}}\left|{\begin{array}{c}0\\0\end{array}}\right.\right]\rightarrow \left[{\begin{array}{ccc}1&\frac{3}{2}&2\\0&-\frac{9}{2}&-8\end{array}}\left|{\begin{array}{c}0\\0\end{array}}\right.\right]$$

Langkah 4

Kita buat 1 utama pada baris kedua dengan operasi \(-\frac{2}{9}R_{2} \rightarrow R_{2}\)

$$\left[{\begin{array}{ccc}1&\frac{3}{2}&2\\0&-\frac{9}{2}&-8\end{array}}\left|{\begin{array}{c}0\\0\end{array}}\right.\right]\rightarrow \left[{\begin{array}{ccc}1&\frac{3}{2}&2\\0&1&\frac{16}{9}\end{array}}\left|{\begin{array}{c}0\\0\end{array}}\right.\right]$$

Pada bentuk akhir pada langkah ini disebut juga bentuk eselon baris.  Kita akan menyederhanakannya lagi sehingga menjadi bentuk eselon baris tereduksi.

Langkah 5

Selanjutnya kita sederhanakan lagi bentuk baris pertama dengan operasi \(-\frac{3}{2}R_{2} +R_{1} \rightarrow R_{1}\) dan diperoleh :

$$\left[{\begin{array}{ccc}1&\frac{3}{2}&2\\0&1&\frac{16}{9}\end{array}}\left|{\begin{array}{c}0\\0\end{array}}\right.\right]\rightarrow \left[{\begin{array}{ccc}1&0&-\frac{2}{3}\\0&1&\frac{16}{9}\end{array}}\left|{\begin{array}{c}0\\0\end{array}}\right.\right]$$

Bentuk akhir pada langkah ke lima merupakan bentuk eselon baris tereduksi. kemudian kita ubah lagi kebentuk sistem persamaan linear :

$$\left[{\begin{array}{ccc}1&0&-\frac{2}{3}\\0&1&\frac{16}{9}\end{array}}\left|{\begin{array}{c}0\\0\end{array}}\right.\right]\rightarrow \begin{array}{c}x-\frac{2}{3}z=0\dots (i)\\y+\frac{16}{9}=0 \dots (ii)\end{array}$$

Persamaan \((i)\) dan \((ii)\) dapat pula dituliskan sebagai :

$$x=\frac{2}{3}z$$

$$y=-\frac{16}{9}z$$

Sehingga jika kita tetapkan \(z = k\) untuk sebarang bilangan \(k\) maka diperoleh himpunan penyelesaian sebagai berikut :

$$\text{HP}=\{(x,y,z)\mid x=\frac{2}{3}z,~y=-\frac{16}{9}z,~\forall~\text{sembarang bilangan z}\}$$

atau

$$\text{HP}=\{(x,y,z)\mid x=\frac{2}{3}k,~y=-\frac{16}{9}k,~z=k,~\forall~\text{sembarang bilangan k}\}$$

Jelas dengan melihat himpunan penyelesaian di atas, sistem persamaan linear homogen pada soal mempunyai tak hingga banyaknya solusi.

Grafik SPL Homogen

Suatu sistem persamaan linear homogen mempunyai solusi trivial sehingga apabila setiap persamaanya dilukiskan kedalam suatu grafik maka grafiknya akan melewati titik pangkal (titik asal atau titik koordinat kartesius).

Catatan : SPL 2 variabel grafiknya berupa garis-garis, SPL 3 variabel grafiknya berupa bidang-bidang sedangkan untuk SPL dengan variabel lebih dari 3 belum memungkinkan untuk dilukiskan.

Contoh  :

Diberikan SPL homogen 2 variabel sebagai berikut :

$$\color{red}{3x+2y=0}$$

$$\color{blue}{2x-y=0}$$

Grafiknya :

ilustrasi grafik SPL 2 variabelContoh 2 :

Diberikan SPL homogen 3 variabel sebagai berikut :

$$\color{red}{4x-2y+3z=0}$$

$$\color{blue}{2x-y-5z=0}$$

$$\color{green}{3x+2y-2z=0}$$

Grafiknya :

ilustrasi grafik SPL 3 variabel

Kesimpulan

  • SPL homogen mempunyai ciri khas yaitu konstanta-konstantanya bernilai nol.
  • Sistem persamaan linear homogen bersifat konsisten, selalu mempunyai solusi setidaknya satu solusi (solusi trivial).
  • SPL Homogen dengan banyak variabel \(>\) banyak persamaan, maka sistem tersebut mempunyai tak hingga banyaknya solusi.

Eliminasi Gauss dan Contoh Penerapannya

Eliminasi Gauss

Siapa itu Gauss?

 

Carl Friedrich Gauss
Sumber : https://www.britannica.com/biography/Carl-Friedrich-Gauss

Carl Friedrich Gauss (1777-1855) adalah seorang matematikawan berkebangsaan Jerman yang mempunyai kontribusi besar didalam bidang geometri, teori bilangan, teori fungsi dan teori probabilitas. Dia menemukan cara untuk menghitung lintasan asteroid, membuat penemuan dasar di dalam teori potensial (bidang elektromagnetik), dan orang pertama yang menggunakan telegraf (1833). Karena konstribusinya itu, dia mempunyai julukan “Prince of Mathematics”.

\(\text{Disarankan sudah membaca :}\)

Eliminasi Gauss

Eliminasi gauss ditemukan oleh Carl Friedrich Gauss, metode ini dapat dimanfaatkan untuk memecahkan sistem persamaan linear dengan merepresentasikan (mengubah) menjadi bentuk matriks, matriks tersebut lalu diubah kebentuk Eselon Baris melalui Operasi Baris Elementer. Kemudian sistem diselesaikan dengan substitusi balik.

Lalu apa itu eselon baris? dan bagaimana bentuknya?

Bentuk Eselon Baris

Suatu matriks memiliki bentuk eselon baris jika memenuhi 3 kriteria berikut :

  1. Jika didalam baris terdapat elemen-elemen yang tidak semuanya nol, maka bilangan tak nol pertama di dalam baris tersebut adalah 1.

    Contoh : (Perhatikan setiap baris pada matriks berikut)

    $$\left[\begin{array}{cccc}\color{red}{1}&\color{red}{4}&\color{red}{0}&\color{red}{2}\\\color{blue}{0}&\color{blue}{0}&\color{blue}{-1}&\color{blue}{2}\\\color{green}{0}&\color{green}{0}&\color{green}{0}&\color{green}{1}\end{array}\right]$$

    Dari matriks diatas baris merah dan baris hijau memenuhi kriteria pertama, karena elemen-elemen pada baris merah atau hijau tidak semuanya nol dan bilangan (elemen) bukan nol pertama (dari kiri) di dalam baris tersebut adalah 1. Sedangkan pada baris biru tidak memenuhi kriteria pertama sebab bilangan (elemen) bukan nol pertama (dari kiri) bukan bernilai 1, melainkan bernilai -1.

  2. Nah kalau ada baris-baris yang semua elemennya  bernilai 0 semua, maka baris-baris tersebut harus dikelompokkan dan diletakkan dibagian bawah matriks.

    Contoh :

    $$\left[\begin{array}{cccc}\color{red}{0}&\color{red}{0}&\color{red}{0}&\color{red}{0}\\\color{red}{0}&\color{red}{0}&\color{red}{1}&\color{red}{-1}\\\color{red}{0}&\color{red}{0}&\color{red}{0}&\color{red}{0}\end{array}\right],~\left[\begin{array}{ccc}\color{blue}{-2}&\color{blue}{3}&\color{blue}{0}\\\color{blue}{0}&\color{blue}{1}&\color{blue}{-1}\\\color{blue}{0}&\color{blue}{0}&\color{blue}{0}\end{array}\right]$$

    Dari contoh diatas, matriks dengan elemen berwarna biru memenuhi kriteria kedua sebab terdapat baris yang semua elemennya 0 dan baris tersebut diletakkan di bagian bawah matriks. Sedangkan pada matriks berwarna merah, masih belum memenuhi kriteria kedua, sebab walaupun terdapat baris dengan elemen-elemennya 0, namun baris-baris tersebut tidak dikelompokkan dan tidak diletakkan di bagian bawah matriks tersebut. Pada matriks merah agar memenuhi kriteria kedua seharusnya :

    $$\left[\begin{array}{cccc}\color{red}{0}&\color{red}{0}&\color{red}{1}&\color{red}{-1}\\\color{red}{0}&\color{red}{0}&\color{red}{0}&\color{red}{0}\\\color{red}{0}&\color{red}{0}&\color{red}{0}&\color{red}{0}\end{array}\right]$$

  3. Jika terdapat dua baris berurutan yang memenuhi kriteria pertama, maka angka 1 (pertama/utama) dari baris yang lebih rendah berada lebih kekanan dari angka 1(pertama/utama) baris yang diatasnya.

    Contoh :

    $$\left[\begin{array}{cccc}\color{green}{1}&\color{green}{-2}&\color{green}{1}&\color{green}{2}\\\color{green}{0}&\color{green}{0}&\color{green}{1}&\color{green}{1}\\\color{green}{0}&\color{green}{0}&\color{green}{0}&\color{green}{0}\end{array}\right],~\left[\begin{array}{ccc}\color{blue}{1}&\color{blue}{3}&\color{blue}{0}\\\color{blue}{0}&\color{blue}{1}&\color{blue}{-1}\\\color{blue}{0}&\color{blue}{1}&\color{blue}{-3}\end{array}\right]$$

    Pada matriks hijau sudah memenuhi kriteria ketiga, karena jelas angka 1 pertama (dari kiri) pada baris yang lebih rendah letaknya lebih kekanan dari angka 1 pertama dari baris yang diatasnya.

    Syarat Bentuk Eselon Baris

    Sedangkan pada matriks biru belum memenuhi sebab terdapat dua baris berurutan yang melanggar kriteria ketiga yaitu baris ke 2 dan 3. Dimana angka 1 pertama baris ketiga terletak tepat di bawah angka 1 pertama baris kedua.

    Syarat Bentuk Eselon Baris

Setelah memahami ketiga kriteria (syarat) dari bentuk eselon baris. Berikut contoh matriks yang mempunyai bentuk eselon baris (memenuhi ketiga kriteria sekaligus).

$$\left[\begin{array}{ccc}1&-1&2\\0&1&9 \\0&0&1\end{array}\right],~\left[\begin{array}{cccc}1&5&1&0\\0&0&1&0 \\0&0&0&0\end{array}\right],~\left[\begin{array}{ccccc}0&1&2&0&0\\0&0&1&0&0 \\0&0&0&0&1\end{array}\right]$$

Selanjutnya kita akan menerapkan metode eliminasi gauss dan subtitusi balik untuk memecahkan suatu sistem persamaan linear dengan operasi baris elementer. Disarankan sudah memahami penggunaan operasi baris elementer untuk pemecahan sistem persamaan linear.

Pemecahan SPL dengan Eliminasi Gauss

Ilustrasi Eliminasi Gauss

Gambaran diatas merupakan ilustrasi proses pemecahan Sistem Persamaan Linear (SPL), dimana urutan langkah-langkahnya dinamakan “Eliminasi Gauss” dan operasi yang dilakukan dinamakan “Operasi Baris Elementer (OBE)” dimana eliminasi gauss ini bertujuan membentuk Eselon Baris.

Catatan : Pada proses pemecahan dengan metode eliminasi gauss pada umumnya memiliki macam-macam jalur atau alur operasi yang dilakukan, misalkan pada langkah awal bisa saja kita menemukan beberapa operasi alternatif dan kita bebas memilihnya. Karena terdapat banyak jalur atau alur operasinya maka jika anda mencoba dengan jalur lain (tidak seperti di contoh) kemungkinan anda akan menemukan bentuk sistem/matriks yang berbeda. Namun jangan khawatir selama operasi yang dilakukan menggunakan Operasi Baris Elementer dan dilakukan secara teliti, maka solusi(pemecahan) yang didapat akan sama dan itu merupakan hal yang wajar.

Contoh 1 (Solusi Tunggal)

Diberikan sistem persamaan linear sebagai berikut :

\(2x+5y+3z =1\)
\(3x+4y+2z=-3\)
\(x+3y+z=2\)

Perintah : Tentukan pemecahan sistem persamaan linear di atas dengan  metode eliminasi gauss.

Penyelesaian :

Mula-mula kita representasikan sistem tersebut kedalam bentuk matriks.

$$\left[{\begin{array}{ccc}2&5&3\\3&4&2\\1&3&1\end{array}}\right|\left.{\begin{array}{c}1\\-3\\2\end{array}}\right]$$

Langkah 1

Kita akan membuat 1 pertama pada baris pertama dengan beberapa pilihan operasi :

  1. Kita bisa menukar baris ke-1 dengan baris ke-3, dinotasikan \(R_{1} \leftrightarrow R_{3}\)
  2. Dengan mengganti baris ke-1 dengan hasil kali baris ke-1 dengan \(\frac{1}{2}\) dinotasikan : \(\frac{1}{2}R_{1} \rightarrow R_{1}\)

Dari dua pilihan diatas kita bebas memilihnya, namun kita akan menggunakan pilihan yang pertama yaitu \(R_{1} \leftrightarrow R_{3}\) sehingga didapat :

$$\left[{\begin{array}{ccc}2&5&3\\3&4&2\\1&3&1\end{array}}\right|\left.{\begin{array}{c}1\\-3\\2\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&3&1\\3&4&2\\2&5&3\end{array}}\right|\left.{\begin{array}{c}2\\-3\\1\end{array}}\right]$$

Langkah 2

Selanjutnya kita akan menyederhanakan bentuk baris ke-2 dan ke-3 sekaligus yaitu dengan operasi \(-3R_{1}+R_{2}\leftarrow R_{2}\) sehingga didapat :

$$\left[{\begin{array}{ccc}1&3&1\\3&4&2\\2&5&3\end{array}}\right|\left.{\begin{array}{c}2\\-3\\1\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&3&1\\0&-5&-1\\2&5&3\end{array}}\right|\left.{\begin{array}{c}2\\-9\\1\end{array}}\right]$$

Kemudian dilanjut dengan operasi \(-2R_{1}+R_{3}\rightarrow R_{3}\)

\(\left[{\begin{array}{ccc}1&3&1\\0&-5&-1\\2&5&3\end{array}}\right|\left.{\begin{array}{c}2\\-9\\1\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&3&1\\0&-5&-1\\0&-1&1\end{array}}\right|\left.{\begin{array}{c}2\\-9\\-3\end{array}}\right]\)

Langkah 3

Kita akan membuat 1 pertama pada baris kedua dengan operasi \(-6R_{3}+R_{2}\rightarrow R_{2}\) dan diperoleh :

$$\left[{\begin{array}{ccc}1&3&1\\0&-5&-1\\0&-1&1\end{array}}\right|\left.{\begin{array}{c}2\\-9\\-3\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&3&1\\0&1&-7\\0&-1&1\end{array}}\right|\left.{\begin{array}{c}2\\9\\-3\end{array}}\right]$$

Langkah 4

Kita akan menyederhanakan lagi baris ke-3 dengan operasi \(1R_{2}+R_{3}\rightarrow R_{3}\)

$$\left[{\begin{array}{ccc}1&3&1\\0&1&-7\\0&-1&1\end{array}}\right|\left.{\begin{array}{c}2\\9\\-3\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&3&1\\0&1&-7\\0&0&-6\end{array}}\right|\left.{\begin{array}{c}2\\9\\6\end{array}}\right]$$

Langkah 5

Selanjutnya kita akan membentuk 1 pertama pada baris ke-3 dengan operasi \(-\frac{1}{6}R_{3}\rightarrow R_{3}\)

$$\left[{\begin{array}{ccc}1&3&1\\0&1&-7\\0&0&-6\end{array}}\right|\left.{\begin{array}{c}2\\9\\6\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&3&1\\0&1&-7\\0&0&1\end{array}}\right|\left.{\begin{array}{c}2\\9\\-1\end{array}}\right]$$

Dari matriks terakhir tersebut sudah memenuhi ketiga kriteria bentuk eselon baris. Selanjutnya tinggal mengubahnya kembali menjadi sistem persamaan linear :

$$\left[{\begin{array}{ccc}1&3&1\\0&1&-7\\0&0&1\end{array}}\right|\left.{\begin{array}{c}2\\9\\-1\end{array}}\right]\rightarrow \begin{array}{c}x+3y+z=2\dots\text{(1)}\\y-7z=9\dots\text{(2)}\\z=-1\dots\text{(3)}\end{array}$$

Kita dapat memulai dengan mensubstitusikan persamaan (3) ke persamaan (2) sehingga didapat :

$$y-7z=9$$

$$\Leftrightarrow y=9+7z=9+7(-1)=2$$

Kemudian nilai dari \(y\) dan \(z\) juga kita substitusikan ke persamaan (1) dan kita dapatkan :

$$x+3y+z=2$$

$$\Leftrightarrow x=2-3y-z$$

$$\Leftrightarrow x=2-3(2)-(-1)=-3$$

Jadi didapat solusi tunggal yaitu \(x=-3, y=2\) dan \(z=-1\).

Contoh 2 (Banyak Solusi)

Diberikan sistem persamaan linear sebagai berikut :

\(2x+10y+4z =-2\)
\(x+4y+5z=-3\)
\(3x+15y+6z=-3\)

Perintah : Tentukan pemecahan sistem persamaan linear di atas dengan  metode eliminasi gauss.

Penyelesaian :

Kita representasikan kedalam bentuk matriks :

$$\left[{\begin{array}{ccc}2&10&4\\1&4&5\\3&15&6\end{array}}\right|\left.{\begin{array}{c}-2\\-3\\-3\end{array}}\right]$$

Langkah 1

Kita buat 1 pertama pada baris pertama dengan pilihan :

  1. Dengan menukar baris ke-1 dengan baris ke-2, dinotasikan : \(R_{1} \leftrightarrow R_{2} \)
  2. Dengan mengganti baris ke-1 dengan hasil kali baris ke-1 dengan \(\frac{1}{2}\), dinotasikan : \(\frac{1}{2}R_{1} \rightarrow R_{1}\)

Kita pilih opsi kedua yaitu menggunakan operasi \(\frac{1}{2}R_{1} \rightarrow R_{1}\) sehingga kita peroleh :

$$\left[{\begin{array}{ccc}2&10&4\\1&4&5\\3&15&6\end{array}}\right|\left.{\begin{array}{c}-2\\-3\\-3\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&5&2\\1&4&5\\3&15&6\end{array}}\right|\left.{\begin{array}{c}-1\\-3\\-3\end{array}}\right]$$

Langkah 2

Kita sederhanakan baris ke-2 dengan operasi \(-1R_{1}+R_{2}\rightarrow R_{2}\)

$$\left[{\begin{array}{ccc}1&5&2\\1&4&5\\3&15&6\end{array}}\right|\left.{\begin{array}{c}-1\\-3\\-3\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&5&2\\0&-1&3\\3&15&6\end{array}}\right|\left.{\begin{array}{c}-1\\-2\\-3\end{array}}\right]$$

Dilanjut penyederhanaan baris ke-3 dengan operasi \(-3R_{1}+R_{3}\rightarrow R_{3}\)

$$\left[{\begin{array}{ccc}1&5&2\\0&-1&3\\3&15&6\end{array}}\right|\left.{\begin{array}{c}-1\\-2\\-3\end{array}}\right]\rightarrow \left[{\begin{array}{ccc}1&5&2\\0&-1&3\\0&0&0\end{array}}\right|\left.{\begin{array}{c}-1\\-2\\0\end{array}}\right]$$

Langkah 3

Kita buat 1 pertama pada baris ke-2 dengan operasi \(-1R_{2}\rightarrow R_{2}\)

$$\left[{\begin{array}{ccc}1&5&2\\0&-1&3\\0&0&0\end{array}}\right|\left.{\begin{array}{c}-1\\-2\\0\end{array}}\right]\rightarrow \left[{\begin{array}{ccc}1&5&2\\0&1&-3\\0&0&0\end{array}}\right|\left.{\begin{array}{c}-1\\2\\0\end{array}}\right]$$

Matriks terakhir sudah memenuhi bentuk eselon baris sehingga selanjutnya menggunakan metode substitusi balik, namun sebelumnya kita harus mengubahnya kembali menjadi bentuk sistem persamaan linear.

$$\left[{\begin{array}{ccc}1&5&2\\0&1&-3\\0&0&0\end{array}}\right|\left.{\begin{array}{c}-1\\2\\0\end{array}}\right]\rightarrow\begin{array}{c}x+5y+2z=-1\dots(1)\\y-3z=2\dots(2)\end{array}$$

Perhatikan persamaan (2) :

$$y-3z=2\Leftrightarrow y=2+3z$$

Subtitusikan ke persamaan (1) dan diperoleh :

$$x+5y+2z=-1$$

$$\Leftrightarrow x=-1-5y-2z$$

$$\Leftrightarrow x=-1-5(2+3z)-2z$$

$$\Leftrightarrow x=-1-10-15z-2z$$

$$\Leftrightarrow x=-11-17z$$

Jelaslah pemecahannya banyak karena nilai dari \(z\) sendiri mempunyai tak terhingga banyaknya kemungkinan. Jadi himpunan penyelesaiannya yaitu :

$$\text{HP}=\{(x,y,z)\mid x=-11-17z,~y=2+3z,~\forall~\text{sebarang bilangan}~z\}$$

Contoh 3 (Tidak Punya Solusi)

Diberikan sistem persamaan linear sebagai berikut :

\(3x+12y+15z=6\)
\(2x+8y+10z=-6\)
\(4x+5y-6z =-2\)

Perintah : Tentukan pemecahan (bila ada) dari sistem persamaan linear di atas dengan  metode eliminasi gauss.

Penyelesaian :

Seperti biasa kita representasikan dulu ke dalam bentuk matriks.

$$\left[{\begin{array}{ccc}3&12&15\\2&8&10\\4&5&-6\end{array}}\right|\left.{\begin{array}{c}6\\-6\\-2\end{array}}\right]$$

Langkah 1

Kita buat 1 pertama pada baris pertama dengan operasi \(\frac{1}{3}R_{1} \rightarrow R_{1}\)

$$\left[{\begin{array}{ccc}3&12&15\\2&8&10\\4&5&-6\end{array}}\right|\left.{\begin{array}{c}6\\-6\\-2\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&4&5\\2&8&10\\4&5&-6\end{array}}\right|\left.{\begin{array}{c}2\\-6\\-2\end{array}}\right]$$

Langkah 2

Selanjutnya kita sederhanakan baris ke-2 dengan operasi \(-2R_{1}+R_{2}\rightarrow R_{2}\) dan diperoleh :

$$\left[{\begin{array}{ccc}1&4&5\\2&8&10\\4&5&-6\end{array}}\right|\left.{\begin{array}{c}2\\-6\\-2\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&4&5\\0&0&0\\4&5&-6\end{array}}\right|\left.{\begin{array}{c}2\\-10\\-2\end{array}}\right]$$

Perhatikan matriks terakhir diatas, kita coba ubah kembali menjadi bentuk sistem persamaan linear.

$$\left[{\begin{array}{ccc}1&4&5\\0&0&0\\4&5&-6\end{array}}\right|\left.{\begin{array}{c}2\\-10\\-2\end{array}}\right]\rightarrow\begin{array}{c}x+4y+5z=2\dots(1)\\(0)x+(0)y+(0)z=-10\dots(2)\\4x+5y-6z=-2\dots(3)\end{array}$$

Kita tahu untuk sembarang bilangan \(x, y, z\) bila dikalikan 0 akan menghasilkan 0 sehingga :

$$(0)x+(0)y+(0)z =0$$

Karena kontradiksi (berlawanan) dengan pernyataan persamaan (2), akibatnya persamaan (2) tidak mempunyai solusi. Karena persamaan (2) bagian dari sistem persamaan linear tersebut maka sistem persamaan linear tersebut juga tidak punya solusi.

Mengingat kembali jika sistem persamaan linear awal (pada soal) dikenakan operasi baris elementer maka akan menghasilkan sistem persamaan linear baru yang memiliki pemecahan yang sama. Baca kembali : Pemecahan Sistem Persamaan Linear dengan Operasi Baris Elementer.

Sehingga jika sistem persamaan linear baru tidak mempunyai solusi maka sistem persamaan linear awal (pada soal) juga tidak mempunyai solusi.

\(\text{Selanjutnya :}\) Eliminasi Gauss Jordan dan Contoh Penerapannya

Sistem Persamaan Linear Secara Umum

Sistem Persamaan Linear Secara Umum (Cover)

Bentuk Umum Persamaan Linear

Persamaan linear pada umumnya terdapat peubah (variabel) dan konstanta yang ditulis dengan huruf kecil. Contohnya yaitu sebuah garis didalam bidang kartesius atau bidang \(xy\) secara persaman aljabar dapat dituliskan sebagai berikut.

$$ax+by=c~\text{atau}~y=mx+c$$

Persamaan tersebut termasuk persamaan linear dua variabel dengan \(a,b,c~\text{dan}~m~\text{(gradien)}\) merupakan suatu konstanta sedangkan \(x,y\) berperan sebagai peubah atau variabel.

Secara umum persamaan linear dengan \(n\) variabel dapat ditulis :

$$a_{1}x_{1}+a_{2}x_{2}+\dots+a_{n}x_{n}=b$$

Dengan \(x_{i}~\text{dan}~a_{i},b\) berturut-turut menyatakan variabel dan konstanta (riil), untuk setiap \(i=\{1,2,3,\dots,n\}\).

Perlu diperhatikan bahwa didalam persamaan linear tidak melibatkan hasil kali atau akar dari variabel. Dalam hal ini variabel tidak dapat berupa fungsi trigonometri, fungsi logaritma, atau fungsi eksponensial.

Contoh :

Didefinisikan 6 persamaan aljabar sebagai berikut.

  • \(3(x+y) -\sqrt{2}z = 5\log{2} +\sin{15}\)
    Persamaan ini termasuk persamaan linear sebab tidak mengandung hasil kali atau akar dari variabel dan tidak mengandung variabel pada fungsi (logaritma, trigonometri atau eksponensial).
  • \(5(x+1)(y+1)=7\)
    Bukan persamaan linear sebab bila kita uraikan lagi diperoleh \(5x+5xy+5y=7\), sehingga didapat hasil kali variabel yakni \(xy\)
  • \(3\sqrt{x}+2=\sqrt{y-z}\)
    Bukan persamaan linear sebab pada persamaan tersebut terdapat akar dari variabel yaitu \(\sqrt{x}\) dan \(\sqrt{y-z}\).
  • \(3\log_{2}{x_{1}} +2=\ln{x_{2}}\)
    Bukan persamaan linear sebab mengandung variabel pada fungsi logaritma yaitu \(\log_{2}{x_{1}}\) dan \(\ln{x_{2}}\), mengingat \(\ln{x_{2}}=\log_{e}{x_{2}}\).
  • \(\sin{(x_{1})}+\cos{(2x_{2})}+\tan{(3x_{3})}=1\)
    Bukan persamaan linear sebab jelas bahwa mengandung variabel pada fungsi trigonometri yaitu \(\sin{(x_{1})}~,~\cos{(2x_{2})}~\text{dan}~\tan{(3x_{3})}\)
  • \((x+y)^2=2^z\)
    Persamaan ini juga bukan persamaan linear sebab bila diuraikan akan diperoleh \(x^2 + 2xy+y^2=2^z\), dari persamaan jelas terdapat variabel pada fungsi eksponensial yaitu \(x^2, y^2 ~\text{dan}~ 2^z\).

Setelah berhasil membedakan persamaan linear dengan persamaan aljabar lainnya, selanjutnya kita akan membahas mengenai pemecahan(solusi) dari persamaan linear dan sistem persamaan linear.

Pemecahan Persamaan Linear

Penting diketahui pemecahan, penyelesaian atau solusi dari sebuah persamaan linear \(a_{1}x_{1}+a_{2}x_{2}+\dots+a_{n}x_{n}=b\) adalah urutan dari \(n\) bilangan \(k_{1},k_{2},\dots,k_{n}\). Sehingga persamaan linear tersebut dapat dipenuhi bila kita mensubtitusikan \( x_{1} =k_{1},x_{2}=k_{2},\dots,x_{n}=k_{n}\). Himpunan dengan anggota \( k_{1},k_{2},\dots,k_{n}\) biasa disebut dengan himpunan penyelesaian dari persamaan linear tersebut.

Contoh :

Diberikan persamaan linear sebagai berikut.

$$-3x_{1} + 4x_{2} = 5$$

Tentukan himpunan penyelesaiannya.

Penyelesaian :

Pada persamaan tersebut, misalkan terdapat sembarang bilangan \(k_{1}\) dengan \(x_{1}=k_{1}\) sehingga dengan sedikit manipulasi aljabar, diperoleh :

$$-3k_{1}+4x_{2}=5$$

$$\Leftrightarrow~4x_{2}=5+3k_{1}$$

$$\Leftrightarrow~x_{2}=\frac{5}{4}+\frac{3}{4}k_{1}$$

Rumus  \(x_{1}=k_{1}\) dan \(x_{2}=\frac{5}{4}+\frac{3}{4}k_{1}\) merupakan gambaran himpunan penyelesaian(solusi) didalam parameter \(k_{1}\). Sedangkan solusi dari persamaan linear tersebut dapat dicari dengan mensubstitusikan bilangan-bilangan ke variabel \(k_{1}\). Contoh jika \(k_{1}=1\) maka menghasilkan solusi \(x_{1} = k_{1} =1\) dan

$$x_{2}=\frac{5}{4}+\frac{3}{4}k_{1}$$

$$\Leftrightarrow~x_{2}=\frac{5}{4}+\frac{3}{4}(1)$$

$$\Leftrightarrow~x_{2}=\frac{8}{4}=2$$

Seandainya penetapan awal dilakukan pada variabel \(x_{2}=k_{2}\), maka dengan cara yang sama akan didapat rumus : \(x_{1}=-\frac{5}{3} +\frac{4}{3}k_{2}\) untuk sebarang bilangan \(k_{2}\). Walaupun rumus pertama dan kedua berbeda namun tetap memiliki himpunan penyelesaian yang sama dengan syarat nilai dari \(k_{1}\) dan \(k_{2}\) disesuaikan. Contoh : pada rumus pertama jika \(k_{1}=1\) didapat solusi \(x_{1}=1\) dan \(x_{2}=2\) sedangkan pada rumus kedua akan mendapatkan hasil yang sama yakni \(x_{1}=1\) dan \(x_{2}=2\) jika dan hanya jika \(k_{2}=2\).

Berdasarkan pernyataan diatas, jelas bahwa nilai \(k_{i}, \forall ~i=\{1,2\}\) memiliki banyak kemungkinan, akibatnya  persamaan linear tersebut mempunyai tak terhingga banyaknya penyelesaian(solusi). Sedangkan himpunan penyelesaiannya dapat ditulis sebagai berikut.

$$HP=\{(x_{1},x_{2})\mid x_{1}=-\frac{5}{3} +\frac{4}{3}k_{2} \wedge x_{2}=k_{2}~,~\forall~\text{sebarang bilangan}~ k_{2}\}$$

atau

$$HP=\{(x_{1},x_{2})\mid x_{1}=k_{1}\wedge x_{2}=\frac{5}{4}+\frac{3k_{1}}{4}~,~\forall ~\text{sebarang bilangan}~k_{1}\}$$

atau

$$HP=\{(x_{1},x_{2})\mid x_{2}=\frac{5}{4}+\frac{3x_{1}}{4}~,~\forall~\text{sebarang bilangan}~ x_{1}\}$$

Bentuk Umum Sistem Persamaan Linear

Definisi (Schaum’s, 2006) : Sistem persamaan linear adalah sekumpulan persamaan linear yang terdiri dari \(m\) persamaan linear \(L_{1},L_{2},\dots,L_{m},\) dengan \(n\) variabel yang tidak diketahui \(x_{1},x_{2},\dots,x_{n}\), dapat disusun dalam bentuk sebagai berikut:

$$a_{11}x_{1}+a_{12}x_{2}+\dots+a_{1n}x_{n} =b_{1}$$
$$a_{21}x_{1}+a_{22}x_{2}+\dots+a_{2n}x_{n} =b_{2}$$

$$\vdots$$

$$a_{m1}x_{1}+a_{m2}x_{2}+\dots+a_{mn}x_{n} =b_{m}$$

dengan \(a_{ij}\) adalah koefisien dari variabel yang tidak diketahui \(x_{j}\) pada persamaan \(L_{i}\), dan bilangan \(b_{i}\) adalah kosntanta dari \(L_{i}\) untuk setiap \(i=\{1,2,\dots,m\}\) dan \(j=\{1,2,3,\dots,n\}\).

Pemecahan Sistem Persamaan Linear

Pemecahan atau solusi pada sebuah sistem persamaan linear adalah urutan dari bilangan \(k_{1},k_{2},\dots,k_{n}\) dengan \(x_{1} =k_{1},x_{2}=k_{2},\dots,x_{n}=k_{n}\). Himpunan \(\{k_{i}\}\) dengan \(i=\{1,2,\dots,n\}\) merupakan pemecahan atau solusi untuk setiap persamaan di dalam sistem tersebut.

Kemudian pada sebuah sistem persamaan linear dikatakan tidak konsisten jika sistem persamaan linear tersebut tidak mempunyai solusi. Sebaliknya, jika sistem persamaan linear tersebut mempunyai solusi (tunggal atau banyak) maka sistem persamaan linear tersebut dikatakan konsisten.

Contoh :

Tentukan pemecahan (solusi) dari masing-masing sistem persamaan linear berikut.

\(g_{1}~:~-x+y=3\)
\(g_{2}~:~4x+y=8\)

\(g_{1}~:~2x+3y=6\)
\(g_{2}~:~4x+6y=24\)

\(g_{1}~:~-x+2y=4\)
\(g_{2}~:~-2x+4y=8\)

Penyelesaian :

Grafik persamaan-persamaan pada soal berupa garis-garis pada bidang \(xy\) atau bidang kartesius. Pada bidang kartesius sebuah titik \((x,y)\) dikatakan terletak pada sebuah garis jika dan hanya jika bilangan-bilangan \(x\) dan \(y\) memenuhi persamaan garis tersebut, akibatnya pemecahan atau solusi dari sistem persamaan pada soal akan berada pada perpotongan dari garis \(g_{1}\) dan garis \(g_{2}\).

Misalkan pada sistem persamaan linear ke-1, garis \(g_{1}\) diberi warna merah dan garis \(g_{2}\) diberi warna biru. Berikut grafik garis \(g_{1}\) dan \(g_{2}\) pada bidang kartesius.

\(g_{1}~:~\color{red}{-x+y=3}\)
\(g_{2}~:~\color{blue}{4x+y=8}\)

Gambar perpotongan garis g1 dan g2 pada bidang kartesius

Grafik tersebut menunjukan bahwa himpunan penyelesaian (solusi) dari sistem persamaan linear tersebut adalah titik potong antara \(g_{1}\) dan \(g_{2}\) yaitu titik \((1,4)\). Dengan kata lain solusinya adalah tunggal yaitu \(x=1\) dan \(y=4\) dan sistem persamaan liniernya konsisten.

Dengan cara yang sama, pada sistem persamaan linear ke-2 diperoleh :

\(g_{1}~:~\color{red}{2x+3y=6}\)
\(g_{2}~:~\color{blue}{4x+6y=24}\)

Grafik grafik g1 dan g2 yang sejajar

Grafik tersebut menunjukkan bahwa kedua garis sejajar sehingga tidak ada titik perpotongan. Dengan kata lain tidak mempunyai solusi dan disimpulkan sistem persamaan linearnya tidak konsisten.

Masih dengan cara yang sama untuk sistem persamaan linear ke-3.

\(g_{1}~:~-x+2y=4\)
\(g_{2}~:~\color{yellow}{-2x+4y=8}\)

Gambar garis g1 dan g2 yang berhimpit

Grafik diatas menunjukkan bahwa \(g_{1}\) dan \(g_{2}\) saling berhimpit, terlihat seperti satu garis saja. Akibatnya himpunan penyelesaian dari sistem persamaan linear tersebut yaitu semua titik yang terletak disepanjang garis tersebut, contohnya titik \((0,2)\) dan \((-4,0)\). Sehingga solusi dari sistem persamaan linear tersebut tak terhingga banyaknya. Sistem persamaan linearnya konsisten dan himpunan penyelesaiannya yaitu :

$$HP=\{(x,y)\mid x=4-2y , \forall~x,y\in\mathbb{R}\}$$

Disarankan selanjutnya membaca : Sistem Persamaan Linear Homogen