Sistem Persamaan Linear Secara Umum

Sistem Persamaan Linear Secara Umum (Cover)

Bentuk Umum Persamaan Linear

Persamaan linear pada umumnya terdapat peubah (variabel) dan konstanta yang ditulis dengan huruf kecil. Contohnya yaitu sebuah garis didalam bidang kartesius atau bidang \(xy\) secara persaman aljabar dapat dituliskan sebagai berikut.

$$ax+by=c~\text{atau}~y=mx+c$$

Persamaan tersebut termasuk persamaan linear dua variabel dengan \(a,b,c~\text{dan}~m~\text{(gradien)}\) merupakan suatu konstanta sedangkan \(x,y\) berperan sebagai peubah atau variabel.

Secara umum persamaan linear dengan \(n\) variabel dapat ditulis :

$$a_{1}x_{1}+a_{2}x_{2}+\dots+a_{n}x_{n}=b$$

Dengan \(x_{i}~\text{dan}~a_{i},b\) berturut-turut menyatakan variabel dan konstanta (riil), untuk setiap \(i=\{1,2,3,\dots,n\}\).

Perlu diperhatikan bahwa didalam persamaan linear tidak melibatkan hasil kali atau akar dari variabel. Dalam hal ini variabel tidak dapat berupa fungsi trigonometri, fungsi logaritma, atau fungsi eksponensial.

Contoh :

Didefinisikan 6 persamaan aljabar sebagai berikut.

  • \(3(x+y) -\sqrt{2}z = 5\log{2} +\sin{15}\)
    Persamaan ini termasuk persamaan linear sebab tidak mengandung hasil kali atau akar dari variabel dan tidak mengandung variabel pada fungsi (logaritma, trigonometri atau eksponensial).
  • \(5(x+1)(y+1)=7\)
    Bukan persamaan linear sebab bila kita uraikan lagi diperoleh \(5x+5xy+5y=7\), sehingga didapat hasil kali variabel yakni \(xy\)
  • \(3\sqrt{x}+2=\sqrt{y-z}\)
    Bukan persamaan linear sebab pada persamaan tersebut terdapat akar dari variabel yaitu \(\sqrt{x}\) dan \(\sqrt{y-z}\).
  • \(3\log_{2}{x_{1}} +2=\ln{x_{2}}\)
    Bukan persamaan linear sebab mengandung variabel pada fungsi logaritma yaitu \(\log_{2}{x_{1}}\) dan \(\ln{x_{2}}\), mengingat \(\ln{x_{2}}=\log_{e}{x_{2}}\).
  • \(\sin{(x_{1})}+\cos{(2x_{2})}+\tan{(3x_{3})}=1\)
    Bukan persamaan linear sebab jelas bahwa mengandung variabel pada fungsi trigonometri yaitu \(\sin{(x_{1})}~,~\cos{(2x_{2})}~\text{dan}~\tan{(3x_{3})}\)
  • \((x+y)^2=2^z\)
    Persamaan ini juga bukan persamaan linear sebab bila diuraikan akan diperoleh \(x^2 + 2xy+y^2=2^z\), dari persamaan jelas terdapat variabel pada fungsi eksponensial yaitu \(x^2, y^2 ~\text{dan}~ 2^z\).

Setelah berhasil membedakan persamaan linear dengan persamaan aljabar lainnya, selanjutnya kita akan membahas mengenai pemecahan(solusi) dari persamaan linear dan sistem persamaan linear.

Pemecahan Persamaan Linear

Penting diketahui pemecahan, penyelesaian atau solusi dari sebuah persamaan linear \(a_{1}x_{1}+a_{2}x_{2}+\dots+a_{n}x_{n}=b\) adalah urutan dari \(n\) bilangan \(k_{1},k_{2},\dots,k_{n}\). Sehingga persamaan linear tersebut dapat dipenuhi bila kita mensubtitusikan \( x_{1} =k_{1},x_{2}=k_{2},\dots,x_{n}=k_{n}\). Himpunan dengan anggota \( k_{1},k_{2},\dots,k_{n}\) biasa disebut dengan himpunan penyelesaian dari persamaan linear tersebut.

Contoh :

Diberikan persamaan linear sebagai berikut.

$$-3x_{1} + 4x_{2} = 5$$

Tentukan himpunan penyelesaiannya.

Penyelesaian :

Pada persamaan tersebut, misalkan terdapat sembarang bilangan \(k_{1}\) dengan \(x_{1}=k_{1}\) sehingga dengan sedikit manipulasi aljabar, diperoleh :

$$-3k_{1}+4x_{2}=5$$

$$\Leftrightarrow~4x_{2}=5+3k_{1}$$

$$\Leftrightarrow~x_{2}=\frac{5}{4}+\frac{3}{4}k_{1}$$

Rumus  \(x_{1}=k_{1}\) dan \(x_{2}=\frac{5}{4}+\frac{3}{4}k_{1}\) merupakan gambaran himpunan penyelesaian(solusi) didalam parameter \(k_{1}\). Sedangkan solusi dari persamaan linear tersebut dapat dicari dengan mensubstitusikan bilangan-bilangan ke variabel \(k_{1}\). Contoh jika \(k_{1}=1\) maka menghasilkan solusi \(x_{1} = k_{1} =1\) dan

$$x_{2}=\frac{5}{4}+\frac{3}{4}k_{1}$$

$$\Leftrightarrow~x_{2}=\frac{5}{4}+\frac{3}{4}(1)$$

$$\Leftrightarrow~x_{2}=\frac{8}{4}=2$$

Seandainya penetapan awal dilakukan pada variabel \(x_{2}=k_{2}\), maka dengan cara yang sama akan didapat rumus : \(x_{1}=-\frac{5}{3} +\frac{4}{3}k_{2}\) untuk sebarang bilangan \(k_{2}\). Walaupun rumus pertama dan kedua berbeda namun tetap memiliki himpunan penyelesaian yang sama dengan syarat nilai dari \(k_{1}\) dan \(k_{2}\) disesuaikan. Contoh : pada rumus pertama jika \(k_{1}=1\) didapat solusi \(x_{1}=1\) dan \(x_{2}=2\) sedangkan pada rumus kedua akan mendapatkan hasil yang sama yakni \(x_{1}=1\) dan \(x_{2}=2\) jika dan hanya jika \(k_{2}=2\).

Berdasarkan pernyataan diatas, jelas bahwa nilai \(k_{i}, \forall ~i=\{1,2\}\) memiliki banyak kemungkinan, akibatnya  persamaan linear tersebut mempunyai tak terhingga banyaknya penyelesaian(solusi). Sedangkan himpunan penyelesaiannya dapat ditulis sebagai berikut.

$$HP=\{(x_{1},x_{2})\mid x_{1}=-\frac{5}{3} +\frac{4}{3}k_{2} \wedge x_{2}=k_{2}~,~\forall~\text{sebarang bilangan}~ k_{2}\}$$

atau

$$HP=\{(x_{1},x_{2})\mid x_{1}=k_{1}\wedge x_{2}=\frac{5}{4}+\frac{3k_{1}}{4}~,~\forall ~\text{sebarang bilangan}~k_{1}\}$$

atau

$$HP=\{(x_{1},x_{2})\mid x_{2}=\frac{5}{4}+\frac{3x_{1}}{4}~,~\forall~\text{sebarang bilangan}~ x_{1}\}$$

Bentuk Umum Sistem Persamaan Linear

Definisi (Schaum’s, 2006) : Sistem persamaan linear adalah sekumpulan persamaan linear yang terdiri dari \(m\) persamaan linear \(L_{1},L_{2},\dots,L_{m},\) dengan \(n\) variabel yang tidak diketahui \(x_{1},x_{2},\dots,x_{n}\), dapat disusun dalam bentuk sebagai berikut:

$$a_{11}x_{1}+a_{12}x_{2}+\dots+a_{1n}x_{n} =b_{1}$$
$$a_{21}x_{1}+a_{22}x_{2}+\dots+a_{2n}x_{n} =b_{2}$$

$$\vdots$$

$$a_{m1}x_{1}+a_{m2}x_{2}+\dots+a_{mn}x_{n} =b_{m}$$

dengan \(a_{ij}\) adalah koefisien dari variabel yang tidak diketahui \(x_{j}\) pada persamaan \(L_{i}\), dan bilangan \(b_{i}\) adalah kosntanta dari \(L_{i}\) untuk setiap \(i=\{1,2,\dots,m\}\) dan \(j=\{1,2,3,\dots,n\}\).

Pemecahan Sistem Persamaan Linear

Pemecahan atau solusi pada sebuah sistem persamaan linear adalah urutan dari bilangan \(k_{1},k_{2},\dots,k_{n}\) dengan \(x_{1} =k_{1},x_{2}=k_{2},\dots,x_{n}=k_{n}\). Himpunan \(\{k_{i}\}\) dengan \(i=\{1,2,\dots,n\}\) merupakan pemecahan atau solusi untuk setiap persamaan di dalam sistem tersebut.

Kemudian pada sebuah sistem persamaan linear dikatakan tidak konsisten jika sistem persamaan linear tersebut tidak mempunyai solusi. Sebaliknya, jika sistem persamaan linear tersebut mempunyai solusi (tunggal atau banyak) maka sistem persamaan linear tersebut dikatakan konsisten.

Contoh :

Tentukan pemecahan (solusi) dari masing-masing sistem persamaan linear berikut.

\(g_{1}~:~-x+y=3\)
\(g_{2}~:~4x+y=8\)

\(g_{1}~:~2x+3y=6\)
\(g_{2}~:~4x+6y=24\)

\(g_{1}~:~-x+2y=4\)
\(g_{2}~:~-2x+4y=8\)

Penyelesaian :

Grafik persamaan-persamaan pada soal berupa garis-garis pada bidang \(xy\) atau bidang kartesius. Pada bidang kartesius sebuah titik \((x,y)\) dikatakan terletak pada sebuah garis jika dan hanya jika bilangan-bilangan \(x\) dan \(y\) memenuhi persamaan garis tersebut, akibatnya pemecahan atau solusi dari sistem persamaan pada soal akan berada pada perpotongan dari garis \(g_{1}\) dan garis \(g_{2}\).

Misalkan pada sistem persamaan linear ke-1, garis \(g_{1}\) diberi warna merah dan garis \(g_{2}\) diberi warna biru. Berikut grafik garis \(g_{1}\) dan \(g_{2}\) pada bidang kartesius.

\(g_{1}~:~\color{red}{-x+y=3}\)
\(g_{2}~:~\color{blue}{4x+y=8}\)

Gambar perpotongan garis g1 dan g2 pada bidang kartesius

Grafik tersebut menunjukan bahwa himpunan penyelesaian (solusi) dari sistem persamaan linear tersebut adalah titik potong antara \(g_{1}\) dan \(g_{2}\) yaitu titik \((1,4)\). Dengan kata lain solusinya adalah tunggal yaitu \(x=1\) dan \(y=4\) dan sistem persamaan liniernya konsisten.

Dengan cara yang sama, pada sistem persamaan linear ke-2 diperoleh :

\(g_{1}~:~\color{red}{2x+3y=6}\)
\(g_{2}~:~\color{blue}{4x+6y=24}\)

Grafik grafik g1 dan g2 yang sejajar

Grafik tersebut menunjukkan bahwa kedua garis sejajar sehingga tidak ada titik perpotongan. Dengan kata lain tidak mempunyai solusi dan disimpulkan sistem persamaan linearnya tidak konsisten.

Masih dengan cara yang sama untuk sistem persamaan linear ke-3.

\(g_{1}~:~-x+2y=4\)
\(g_{2}~:~\color{yellow}{-2x+4y=8}\)

Gambar garis g1 dan g2 yang berhimpit

Grafik diatas menunjukkan bahwa \(g_{1}\) dan \(g_{2}\) saling berhimpit, terlihat seperti satu garis saja. Akibatnya himpunan penyelesaian dari sistem persamaan linear tersebut yaitu semua titik yang terletak disepanjang garis tersebut, contohnya titik \((0,2)\) dan \((-4,0)\). Sehingga solusi dari sistem persamaan linear tersebut tak terhingga banyaknya. Sistem persamaan linearnya konsisten dan himpunan penyelesaiannya yaitu :

$$HP=\{(x,y)\mid x=4-2y , \forall~x,y\in\mathbb{R}\}$$

Disarankan selanjutnya membaca : Sistem Persamaan Linear Homogen

2 Comments

Tinggalkan Balasan

Alamat email anda tidak akan dipublikasikan. Required fields are marked *