Definisi Matriks Elementer dan Sifatnya

Definisi dan Sifat dari Matriks Elementer

Definisi Matriks Elementer

Matriks elementer adalah matriks persegi \(n \times n\) yang dinyatakan sebagai hasil matriks satuan \(n \times n\) yang dikenakan sebuah operasi baris elementer.

Lalu bagaimana cara membentuk matriks elementer ?

Mengingat kembali dalam Operasi Baris Elementer (OBE) terdapat 3 operasi dasar, sehingga kita peroleh 3 cara untuk membuat matriks elementer yaitu :

  1. Dengan operasi mempertukarkan dua baris pada matriks satuan, dinotasikan : \(R_{i} \leftrightarrow R_{j}\)

    Contoh :

    Misalkan kita punya matriks satuan \(I_{3 \times 3}\) dan kita akan menggunakan operasi \(R_{1} \leftrightarrow R_{3}\), sehingga kita dapatkan matriks elementer (merah) :

    $$\left[{\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}}\right]\rightarrow\color{red}{\left[{\begin{array}{ccc}0&0&1\\0&1&0\\1&0&0\end{array}}\right]}$$
  2. Mengalikan sebuah baris dengan konstanta/skalar, selama skalar bukan nol, dinotasikan : \(kR_{i} \rightarrow R_{1}\)

    Contoh :

    Jika kita punya matriks \(I_{2 \times 2}\) dan dikenakan operasi \(-\frac{\sqrt{3}}{2}R_{2} \rightarrow R_{2}\) maka kita peroleh matriks elementer sebagai berikut :

    $$\left[{\begin{array}{cc}1&0\\0&1\end{array}}\right]\rightarrow\color{red}{\left[{\begin{array}{cc}1&0\\0&-\frac{\sqrt{3}}{2}\end{array}}\right]}$$

  3. Menambahkan kelipatan dari suatu baris dengan baris lain, dinotasikan : \(kR_{1} +R_{j} \rightarrow R_{j}\)

    Contoh :

    Jika matriks satuan \(I_{4 \times 4}\) dikenakan operasi \(\pi R_{2} +R_{3} \rightarrow R_{3}\) maka akan diperoleh :

    $$\left[{\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{array}}\right]\rightarrow\color{red}{\left[{\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&\pi&1&0\\0&0&0&1\end{array}}\right]}$$

Setelah mengetahui definisi dan bentuk matriks elementer selanjutnya kita akan mempelajari sifat-sifatnya melalui teorema-teorema berikut. Catatan : Untuk selanjutnya untuk penamaan matriks elementer kita akan menggunakan simbol \(E\).

Teorema 1

Misalkan \(E\) adalah matriks elementer yang dibentuk dengan melakukan sebuah operasi baris elementer tertentu pada \(I_{n\times n}\) (matriks satuan). Jika operasi baris elementer yang sama dikenakan pada sebarang matriks \(A_{n\times m}\) maka hasilnya sama dengan hasil kali \(EA\).

Contoh penerapan dari teorema 1 :

Misalkan didefinisikan matriks \(A\) dan \(E\) sebagai berikut :

$$A=\left[{\begin{array}{cccc}2&-4&7&1\\3&-1&0&1\\-3&2&5&0\end{array}}\right]$$

$$I_{3\times 3} \xrightarrow[ ]{3R_{3}+R_{1}\rightarrow R_{1}} E=\left[{\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&0&3\\0&1&0\\0&0&1\end{array}}\right]$$

Kita akan mengecek kebenaran teorema 1 dari contoh ini. Apakah benar :

$$A \xrightarrow[ ]{3R_{3}+R_{1}\rightarrow R_{1}} EA$$

Untuk pernyataan di atas, dengan operasi perkalian antar matriks kita dapatkan :

$$EA=\left[{\begin{array}{ccc}1&0&3\\0&1&0\\0&0&1\end{array}}\right]\left[{\begin{array}{cccc}2&-4&7&1\\3&-1&0&1\\-3&2&5&0\end{array}}\right]=\left[{\begin{array}{cccc}-7&2&22&1\\3&-1&0&1\\-3&2&5&0\end{array}}\right]\dots(i)$$

Kemudian kita kenakan matriks \(A\) dengan OBE yang sama \(3R_{3}+R_{1}\rightarrow R_{1}\) sehingga kita peroleh :

$$\left[{\begin{array}{cccc}2&-4&7&1\\3&-1&0&1\\-3&2&5&0\end{array}}\right]\rightarrow\left[{\begin{array}{cccc}-7&2&22&1\\3&-1&0&1\\-3&2&5&0\end{array}}\right]\dots(ii)$$

Dari persamaan \((i)\) dan \((ii)\), ditarik kesimpulan bila kita mengenakan OBE \(3R_{3}+R_{1}\rightarrow R_{1}\) pada matriks A maka hasilnya akan sama dengan hasil kali \(EA\). Jadi pernyataan \(A \xrightarrow[ ]{3R_{3}+R_{1}\rightarrow R_{1}} EA\) bernilai benar.

Tambahan

Mari kita berpikir bersama, sebuah OBE yang dikenakan pada matriks satuan \(I\) dapat menghasilkan matriks elementer \(E\).

Lalu apakah ada OBE yang jika dikenakan pada matriks \(E\) akan menghasilkan matriks satuan \(I\) ?

Jawabannya adalah ada!

Misalkan jika \(E\) kita peroleh dengan menukarkan baris ke-\(i\) dengan baris ke-\(j\) pada \(I\), maka kita dapat mencari matriks \(I\) jika kita menukarkan baris ke-\(j\) dengan baris ke-\(i\) pada \(E\).

Untuk operasi lainnya simak tabel berikut :

OBE pada \(I\) yang menghasilkan \(E\)OBE pada \(E\) yang menghasilkan \(I\)
Mempertukarkan baris ke-\(i\) dengan baris ke-\(j\), dinotasikan : \(R_{i} \leftrightarrow R_{j}\)Mempertukarkan baris ke-\(j\) dengan baris ke-\(i\), dinotasikan : \(R_{j} \leftrightarrow R_{i}\)
Mengalikan baris ke-\(i\) dengan skalar \(k\), \(k\neq 0\) dan dinotasikan : \(kR_{i} \rightarrow R_{i}\)Mengalikan baris ke-\(i\) dengan skalar \(\frac{1}{k}\), dinotasikan : \(\frac{1}{k}R_{i} \rightarrow R_{i}\)
Menambahkan hasil kali baris ke-\(i\) dengan skalar \(k\) ke baris ke-\(j\), dinotasikan : \(kR_{i} +R_{j}\rightarrow R_{j}\)Menambahkan hasil kali baris ke-\(j\) dengan skalar \(-k\) ke baris ke-\(i\), dinotasikan : \(-kR_{j} +R_{i}\rightarrow R_{i}\)

Operasi-operasi pada ruas kanan tabel di atas dinamakan operasi inversLalu apa kegunaan dari operasi tersebut?

Operasi tersebut berguna untuk mencari invers dari suatu matriks dengan menggunakan matriks elementer. Namun kita tidak akan membahasnya di postingan ini. Untuk teorema selanjutnya juga tidak kalah penting dari teorema matriks elementer yang pertama.

Teorema 2

Setiap matriks elementer adalah invertible (dapat dibalik / mempunyai invers) dan inversnya adalah juga matriks elementer.

Maksud dari teorema 2 adalah ketika ada matriks elementer \(E_{1}\) yang dihasilkan dengan memperagakan sebuah OBE (kita namakan operasi *) pada \(I\). Kemudian kita gunakan operasi inversnya (kita namakan operasi **) pada matriks satuan \(I\) maka akan menghasilkan matriks elementer \(E_{2}\) mengingat operasi invers pada pembahasan saat ini juga merupakan operasi baris elementer.

Sehingga berdasarkan teorema 1 maka jika matriks \(E_{1}\) dikalikan dengan \(E_{2}\) maka diperoleh :

$$E_{1}E_{2}=1\dots(i)$$

Gambaran secara kasarnya yaitu efek operasi (*) akan dikenakan pada matriks \(E_{2}\) sehingga operasi (*) dan operasi (**) akan bertemu dan saling “meniadakan” dan menyisakan matriks satuan \(I\).

Kemudian dengan cara yang sama jika kita mengalikan matriks \(E_{2}\) dengan \(E_{1}\) maka juga diperoleh :

$$E_{1}E_{2}=1\dots(ii)$$

Berdasarkan sifat invers pada matriks yaitu jika \(AB =BA =I\) maka matriks \(B = A^{-1}\) atau \(A = B^{-1}\).

Sehingga berdasarkan persamaan \((i)\) dan \((ii)\) maka didapat \(E_{1}E_{2} =E_{2}E_{1} =I\) dan \(E_{1} = E_{2}^{-1}\) atau \(E_{2} = E_{1}^{-1}\). Jadi benar bahwa matriks elementer dapat dibalik dan inversnya juga merupakan matriks elementer.

Contoh :

Misalkan didefinisikan matriks elementer \(E_{1}\) dan \(E_{2}\) sebagai berikut.

$$I_{3\times 3} \xrightarrow[ ]{2R_{2}\rightarrow R_{2}} E_{1}=\left[{\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&0&0\\0&2&0\\0&0&1\end{array}}\right]$$
$$I_{3\times 3} \xrightarrow[ ]{\frac{1}{2}R_{2}\rightarrow R_{2}} E_{2}=\left[{\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&0&0\\0&\frac{1}{2}&0\\0&0&1\end{array}}\right]$$

Kemudian kita kalikan keduanya sehingga didapat :

$$E_{1}E_{2}=\left[{\begin{array}{ccc}1&0&0\\0&2&0\\0&0&1\end{array}}\right]\left[{\begin{array}{ccc}1&0&0\\0&\frac{1}{2}&0\\0&0&1\end{array}}\right]=\left[{\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}}\right]$$

dan dengan cara yang sama juga diperoleh :

$$E_{2}E_{1}=\left[{\begin{array}{ccc}1&0&0\\0&\frac{1}{2}&0\\0&0&1\end{array}}\right]\left[{\begin{array}{ccc}1&0&0\\0&2&0\\0&0&1\end{array}}\right]=\left[{\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}}\right]$$

Jadi didapat \(E_{1}E_{2} =E_{2}E_{1} =I\) dan berdasarkan sifat invers pada matriks maka \(E_{1} = E_{2}^{-1}\) atau \(E_{2} = E_{1}^{-1}\).

Selanjutnya disarankan membaca : Penerapan Matriks Elementer dan Metode Mencari Invers yang Lebih Ringkas

Karena jika biasanya dalam mencari invers suatu matriks perlu mencari determinan lalu mencari transpose matriks adjoint dan seterusnya. Apalagi jika invers yang dicari dari matriks yang mempunyai jumlah baris dan kolom yang banyak pasti akan repot.

Tinggalkan Balasan

Alamat email anda tidak akan dipublikasikan. Required fields are marked *