Konsep Himpunan – Definisi, Notasi dan Contoh

Cover Konsep Himpunan - Gambar Perbedaan Kumpulan dan Himpunan Objek

Kenapa Kita Perlu Belajar Konsep Himpunan ?

Sebenarnya konsep himpunan cukup penting dan dekat dengan kehidupan kita sehari-hari. Mari kita ingat kembali saat masih duduk dibangku sekolah dasar, di mana kita sedang belajar mengidentifikasi objek lingkaran. Untuk mengidentifikasi objek sebagai lingkaran, kita harus mengklasifikasikan objek tersebut ke dalam himpunan objek yang memiliki sifat karakteristik lingkaran.

Gambar Ilustrasi Baik dan Buruk Sebagai Contoh Himpunan

Selain itu, kita juga dapat memandang nilai-nilai sosial di masyarakat sebagai sifat atau karakteristik yang membedakan baik atau buruknya perilaku manusia di mata masyarakat. Hal tersebut berakibat tercipta sebuah himpunan perilaku yang baik dan buruk sesuai nilai-nilai tersebut. Jadi dengan mempelajari konsep himpunan diharapkan kita dapat memahami sifat atau karakteristik himpunan dan belajar hubungan antar himpunan.

Definisi Himpunan

Dalam perkembangannya, konsep himpunan banyak digunakan oleh matematikawan secara intuitif. Hingga pada pergantian abad ke-\(20\) ketika muncul Paradoks Russell (coming soon) yang memicu para matematikawan untuk mempelajari lebih lanjut mengenai konsep himpunan. Oleh karena itu, mari kita pelajari juga konsep himpunan ini, dimulai dari definisi himpunan sebagai berikut :

Definisi (Informal) : Himpunan didefinisikan sebagai koleksi dari objek-objek pada suatu semesta pembicaraan. Objek-objek tersebut selanjutnya disebut dengan istilah anggota atau elemen dan semesta pembicaraan biasa disebut dengan himpunan semesta.

Pengertian di atas biasa digunakan di bidang naïf set theory. Sedangkan untuk pengertian formal dari himpunan dapat dipelajari di bidang axiomatic set theory. Sementara, kita gunakan definisi informal agar lebih mudah dipahami.

Baca juga : Apa itu semesta pembicaraan dalam teori himpunan ?

Notasi dalam Himpunan

Himpunan umumnya disimbolkan dengan huruf kapital besar. Kemudian dalam himpunan, kalimat “adalah elemen dari” biasa dinotasikan dengan simbol \(\in\) sedangkan kalimat “adalah bukan elemen dari” dinotasikan dengan simbol \(\notin\). Tujuan dari penotasian ini adalah supaya mempersingkat penulisan dan agar lebih mudah dilakukan analisis jika sudah kompleks pembicaraannya.

Contoh Penulisan :

\(x \in A\) (dibaca : \(x\) adalah elemen atau anggota dari himpunan \(A\))

\(y \notin A\) (dibaca : \(y\) adalah bukan elemen dari himpunan \(A\))

Himpunan Kosong

Himpunan kosong adalah himpunan yang tidak mempunyai elemen atau anggota dan biasa dinotasikan dengan \(\emptyset\).

Contoh Penulisan :

\(A=\emptyset\) atau \(A=\{~\}\) (artinya \(A\) adalah himpunan kosong)

Catatan :

Perlu diketahui bahwa \(\emptyset \neq \{\emptyset\}\) sebab himpunan \(\{\emptyset\}\) tidaklah kosong melainkan mempunyai satu elemen yaitu himpunan kosong.

    Mendefinisikan Himpunan dengan Metode Tabulasi

    Ilustrasi Sederhana Metode Tabulasi

    Jika sebelumnya kita hanya menotasikan himpunan. Nah, sekarang kita akan mencoba mendefinisikan sebuah himpunan dengan Metode Tabulasi atau Listing Method. Metode ini berfungsi untuk mendefinisikan himpunan dengan mendaftar beberapa/semua elemennya.

    Contoh Penulisan :

    1. \(A=\{1,2,3,4,5,6,7,8\}\)
      Contoh diatas adalah dengan mendaftar semua elemen dari \(A\). Bagaimana jika elemennya cukup banyak namun masih terhingga? Perhatikan contoh kedua berikut.
    2. \(B = \{1,3,5,7,\dots,99\}\) atau \(B=\{99,97,95,93,\dots, 1\}\)
      Ingat, contoh ini kita gunakan jika himpunannya memiliki berhingga elemen. Bagaimana jika elemennya ada tak terhingga banyaknya? Cek contoh ketiga, keempat dan kelima.
    3. \(C = \{1,3,5,7,\dots\}\)
      Jika kita perhatikan dari contoh pertama, kedua dan ketiga, penempatan elemennya dimulai dari yang terkecil sampai terbesar. Hal ini hanya bertujuan agar kita lebih mudah melihat pola yang tersusun oleh elemen-elemen tersebut. Jadi kita boleh saja membalik urutannya seperti contoh nomor 4.
    4. \(D = \{\dots,-6,-4,-2\}\) atau \(D=\{-2,-4,-6,\dots\}\)
      Himpunan \(C\) adalah contoh himpunan yang tidak terbatas ke atas. Sedangkan himpunan \(D\) adalah contoh himpunan yang tidak terbatas ke bawah. Bagaimana jika himpunannya tidak terbatas ke atas dan ke bawah? Simak contoh berikut.
    5. \(E = \{\dots,-6, -4, -2,0,2,4,6,\dots\}\)
      Penulisan ini digunakan jika himpunannya tidak terbatas ke atas dan tidak terbatas ke bawah.

    By the way, jika kita melihat pola himpunan \(A\) sampai \(E\) maka cukup jelas untuk mengetahui bahwa :

    1. Himpunan \(A\) adalah himpunan bilangan asli yang kurang dari sama dengan \(8\).
    2. Himpunan \(B\) adalah himpunan bilangan asli ganjil yang kurang dari sama dengan \(99\).
    3. Himpunan \(C\) adalah himpunan bilangan asli ganjil.
    4. Himpunan \(D\) adalah himpunan bilangan bulat genap yang kurang dari \(0\) atau bisa juga disebut himpunan bilangan bulat genap negatif.
    5. Himpunan \(E\) adalah himpunan bilangan bulat genap.

    Kekurangan Metode Tabulasi

    Dalam menggunakan metode ini, kita diharuskan dapat mendaftar elemen sampai membentuk suatu pola tertentu. Mimin memberikan saran, jika susunan elemen mempunyai pola yang cukup unik, lebih baik kita memberikan keterangan berupa kalimat deskripsi mengenai himpunan tersebut.

    Contoh kita diminta mendefinisikan himpunan bilangan asli yang habis dibagi \(3\) atau \(5\) dengan metode tabulasi.

    Jawaban pertama : \(A=\{3,5,6,9,10,12,15,18,\dots\}\)

    Jika orang lain membacanya maka akan cukup sukar untuk melihat polanya. Sehingga lebih baik dengan memberikan deskripsi :

    Jawaban kedua : \(A=\{3,4,6,9,\dots\} \) dengan \(A\) adalah himpunan bilangan asli yang habis dibagi \(3\) atau \(5\).

    Terlihat jawaban kedua menjadi lebih panjang dan terkesan kurang efektif. Lalu, apakah ada cara yang “lebih ringkas/efektif” ? Simak metode berikut.

    Mendefinisikan Himpunan dengan Karakteristiknya (Metode Deskripsi)

    Ilustrasi Sederhana Metode Deskripsi

    Apa itu karakteristik himpunan ? Secara sederhana, karakteristik himpunan dapat disebut sebagai syarat tertentu yang melekat pada setiap objek untuk menjadi elemen dari himpunan tersebut. Contohnya jika kita punya \(A\) himpunan bilangan bulat genap, maka setiap elemen dari \(A\) harus memiliki syarat bilangan bulat dengan sifat genap.

    Dalam beberapa buku, syarat dinyatakan dalam kalimat terbuka dan dinotasikan \(P(x)\) yang kemudian dituliskan dalam kurung kurawal :

    \(X=\{x~|~P(x)\}\) atau \(X=\{x~:~P(x)\}\)

    Dibaca : \(X\) adalah himpunan semua \(x\) yang mempunyai sifat \(P\). Tanda \(|\) atau \(:\) dibaca “dimana” atau “dengan”. Contoh :

    \(\mathbb{R}= \{x~|~x~\text{adalah bilangan real}\}\)

    Dibaca : \(\mathbb{R}\) adalah himpunan semua \(x\) dimana \(x\) adalah bilangan real.

    Contoh Penulisan :

    1. \(A=\{x~|~x~\text{adalah bilangan bulat genap}\}~\text{atau}~A=\{a~|~a~\text{adalah bilangan bulat genap}\}\)
      Variabel \(x\) dapat kita ganti sesuka kita. Selain itu, kita dapat mengganti varibel \(a\) dengan definisi bilangan bulat genap sebagai berikut.
    2. \(A=\{a~|~a=2b~\text{untuk suatu bilangan bulat}~b\}~\text{atau}~A=\{a~|~a=2b~\text{dan}~b\in\mathbb{N}\}\)
      Mengingat bilangan bulat genap adalah bilangan bulat kelipat dari 2. Maka setiap bilangan bulat genap dapat ditulis \(a = 2\times b\) untuk suatu bilangan bulat \(b\). Alternatif penulisannya sebagai berikut.
    3. \(A=\{2b~|~b~\text{adalah bilangan bulat}\}~\text{atau}~A=\{2b~|~b\in\mathbb{N}\}\)
      Jika kita perhatikan pada contoh pertama di atas, himpunan semestanya adalah himpunan bilangan bulat genap. Sedangkan untuk contoh kedua dan ketiga himpunan semestanya adalah himpunan bilangan bulat.

    Pada contoh di atas simbol \(\mathbb{N}\) adalah notasi yang biasa digunakan untuk menunjukkan himpunan semua bilangan asli. Untuk contoh simbol lainnya yang sering digunakan di matematika dapat dilihat pada bagian berikut.

    Notasi Himpunan pada Sistem Bilangan

    Berikut adalah daftar notasi yang biasa digunakan untuk menyatakan himpunan pada sistem bilangan.

    • Himpunan semua Bilangan Asli dinotasikan \(\mathbb{N}\)
    • Himpunan semua Bilangan Bulat dinotasikan \(\mathbb{Z}\)
    • Himpunan semua Bilangan Rasional dinotasikan \(\mathbb{Q}\)
    • Himpunan semua Bilangan Irasional dinotasikan \(\mathbb{P}\)
    • Himpunan semua Bilangan Real dinotasikan \(\mathbb{R}\)
    • Himpunan semua Bilangan Kompleks dinotasikan \(\mathbb{C}\)

    Kesimpulan

    Pembicaraan di bidang matematika tidak pernah terlepas dari istilah himpunan. Hal ini dikarenakan pada setiap pembicaraan tersebut haruslah jelas semesta pembicaraannya. Oleh karena itu, dengan belajar notasi dan mendefinisikan himpunan, diharapkan kita dapat menuliskan dan memahami himpunan semesta pada suatu pembicaraan. Nantikan pembahasan mengenai hubungan antar himpunan (coming soon).

    Untuk selanjutnya mimin sarankan membaca : Operasi Logika Matematika dalam Kalimat Deklaratif. Karena bagus dibaca sebelum belajar hubungan antar himpunan. Oh ya, kalau kalian baca dengan teliti ada cerita asmaranya lho! see yea ^_^.

    Referensi

    • Nancy Rodgers. (2000). Learning to Reason: An Introduction to Logic, Sets, and RelationsJohn Wiley & Sons. Hlm. 213-217.

    Logika Matematika | (Studi Kasus) Logika dalam Kalimat

    Cover Logika Matematika

    Konsep Logika Matematika dalam Kalimat

    Dalam matematika, logika dapat diartikan sebagai dasar dari setiap pembuktian yang dibangun. Selanjutnya, logika kalimat kita artikan sebagai logika yang terkandung pada suatu kalimat.

    Dalam suatu pernyataan (kalimat), sering muncul ketidakmengertian, kesalahtafsiran dan bahkan kesalahpahaman oleh karena beberapa aspek yang terkandung pada kalimat tersebut.

    Studi Kasus 1 : (Cerita Matematikawan Naik Pesawat)

    Seorang ahli matematika terbang tanpa transit dari Tokyo ke Jakarta dengan menaiki pesawat. Waktu terbang yang dijadwalkan adalah sembilan jam. Beberapa waktu setelah lepas landas, pilot mengumumkan bahwa satu mesin harus dimatikan karena kerusakan mekanis : “Jangan khawatir kita masih aman. Satu-satunya efek yang terlihat bagi kita adalah bahwa total waktu terbang kita adalah sepuluh jam, bukan sembilan.”

    Beberapa jam setelah penerbangan, pilot memberi tahu penumpang bahwa mesin lain harus dimatikan karena kerusakan mekanis: “Tapi jangan khawatir kita masih aman. Hanya waktu terbang kita yang akan mencapai dua belas jam.” Beberapa waktu kemudian, mesin ketiga gagal dan harus dimatikan. Tetapi pilot meyakinkan para penumpang: “Jangan khawatir bahkan dengan satu mesin, kami masih benar-benar aman. Itu hanya berarti bahwa akan memakan waktu enam belas jam total untuk pesawat ini tiba di Jakarta.”

    Matematikawan itu mengatakan kepada sesama penumpangnya: “Jika mesin terakhir rusak juga, maka kita akan berada di udara selama dua puluh empat jam sekaligus!“.

    Masih bingung dengan cerita di atas? Kalimat yang dikatakan oleh matematikawan tersebut memiliki dua perspektif (pandangan) yang berbeda yang dapat mengakibatkan kesalahtafsiran dan kesalahpahaman. Memperhatikan hal tersebut, diperlukan konsep berikut ini.

    Apa Itu Semesta Pembicaraan ?

    Semesta pembicaraan diartikan sebagai himpunan semua objek yang dibahas di dalam pembicaraan. Semisal dalam kalimat : “Melon lebih besar dari pada Jeruk”. Objek dari kalimat tersebut adalah Melon dan Jeruk sehingga semesta pembicaraannya adalah himpunan buah-buahan.

    Studi Kasus 2 :

    Tentukan semesta pembicaraannya sehingga persamaan \(x^2 -x -2=0\)  mempunyai :

    (a) Tepat satu solusi.

    (b) Tepat dua solusi.

    Pembahasan :

    Solusi yang dimaksud adalah nilai-nilai dari \(x\) yang jika disubstitusikan ke persamaan tersebut bernilai benar. Selain itu, solusi dari persamaan tersebut merupakan objek-objek yang ada pada pernyataan (kalimat) di soal.

    Jika kita faktorkan maka kita punya \((x+1)(x-2)=0\) dimana \(x=-1\) atau \(x=2\). Dari dua solusi tersebut jelas bahwa keduanya merupakan anggota bilangan bulat, bilangan rasional dan bilangan real. Jadi semesta pembicaraan untuk pertanyaan (b) adalah himpunan bilangan bulat, himpunan bilangan rasional, atau himpunan bilangan real.

    Catatan : himpunan yang memuat objek \(-1\) dan \(2\) tidak terbatas hanya itu. Kita boleh saja membuat sebarang himpunan yang memuat kedua objek tersebut dengan mendefinisikannya terlebih dahulu. Semisal pada awal soal dituliskan “Diketahui himpunan \(A=\{-1,2,3\}\).”

    Sedangkan jika dikehendaki tepat satu solusi, maka kita perlu membatasi semesta pembicaraannya agar hanya salah satu solusi dari \(-1\) atau \(2\) yang memenuhi persamaan tersebut. Kemudian kita perlu melihat perbedaan karakteristik dari dua objek (solusi) tersebut. Kita tahu bahwa \(-1\) adalah bilangan bulat negatif sedangkan \(2\) bilangan bulat positif.

    Jadi agar diperoleh tepat satu solusi, maka sekarang semesta pembicaraannya kita batasi menjadi himpunan bilangan bulat negatif saja atau himpunan bilangan bulat positif saja.

    Variabel dan Konstanta dalam Logika Matematika

    Variabel diartikan sebagai lambang yang menjadi simbol dari sebarang anggota di dalam semesta pembicaraannya.

    Konstanta diartikan sebagai lambang suatu anggota tertentu dari semesta pembicaraan.

    Studi Kasus 3 :

    Tentukan konstanta atau variabel pada kalimat-kalimat di bawah ini.

    1. Soekarno adalah seorang proklamator RI.
    2. Lima puluh habis dibagi \(5\).

    Pembahasan :

    1. Objek “soekarno” pada kalimat di atas diartikan secara khusus sebagai seorang proklamator RI sehingga merupakan konstanta.
    2. Objek “lima puluh” dalam bahasa indonesia diartikan sebagai angka lima puluh yang disimbolkan \(50\) yang merupakan suatu konstanta. Begitu pula untuk simbol \(5\) mewakili angka lima yang merupakan suatu konstanta juga.

    Klasifikasi Kalimat

    Secara garis besar, kita klasifikasikan menjadi dua macam yaitu kalimat deklaratif dan kalimat terbuka. Secara tidak sadar kita sering menggunakannya dalam kehidupan sehari-hari. Pernahkah kalian berbohong kepada orang lain? umumnya kebohongan dikategorikan sebagai kalimat deklaratif. Untuk lebih jelasnya sebagai berikut:

    1. Kalimat Deklaratif

    Kalimat deklaratif adalah kalimat yang mengandung nilai salah atau benar, dan tidak bernilai kedua-duanya. Benar pada kalimat berarti mempunyai persesuaian antara isi pernyataan dengan fakta sesungguhnya.

    Kalimat deklaratif yang nilai kebenarannya dengan fakta sesungguhnya disebut kalimat faktual. Sedangkan kalimat deklaratif yang nilai kebenarannya tanpa melihat fakta sesungguhnya disebut kalimat non faktual.

    Baca juga : Hukum Operasi Logika Matematika

    Studi Kasus 4 :

    Tentukan kalimat-kalimat berikut ini merupakan kalimat yang mempunyai arti atau kalimat tanpa arti atau kalimat deklaratif.

    1. Ya ampun!
    2. Satu tambah dua hasilnya sama dengan empat.
    3. Presiden Indonesia dipilih setiap lima tahun sekali.
    4. Selama ini angka \(2\) selalu bergandengan dengan angka \(3\).
    5. Besok kiamat atau tidak kiamat.

    Pembahasan :

    1. Merupakan kalimat seru yang mempunyai arti, namun tidak mengandung nilai benar atau salah.
    2. Merupakan kalimat faktual (deklaratif) dengan nilai kebenarannya false (bernilai salah).
    3. Merupakan kalimat faktual (deklaratif) dengan nilai kebenarannya true (bernilai benar).
    4. Merupakan kalimat tanpa arti karena istilah “selalu bergandengan” tidak terdefinisi dengan baik.
    5. Merupakan kalimat non faktual (deklaratif) dengan nilai kebenarannya true (bernilai benar). Untuk penjelasannya akan dibahas di halaman yang berbeda.

    2. Kalimat Terbuka

    Kalimat terbuka adalah kalimat yang baru dapat ditentukan nilai kebenarannya (atau menjadi kalimat deklaratif) jika variabel di dalamnya diganti menjadi suatu konstanta tertentu.

    Studi Kasus 5 :

    Tentukan apakah kalimat-kalimat berikut ini merupakan kalimat terbuka atau kalimat deklaratif. Jika kalimat deklaratif, apakah bernilai benar atau salah.

    1. \(x\) merupakan bilangan negatif.
    2. \(0\) merupakan bilangan irasional.
    3. Jika \(x, y, z\) merupakan bilangan asli, maka \(x < z < y\).
    4. Jika semesta pembicaraan adalah semua manusia, maka Tono lebih tinggi daripada Tini.

    Pembahasan :

    1. Merupakan kalimat terbuka sebab terdapat variabel yang disimbolkan dengan \(x\)  tidak secara khusus mewakili suatu anggota dari himpunan bilangan negatif.
    2. Merupakan kalimat deklaratif bernilai false (salah), sebab dapat kita tuliskan \(0=\frac{0}{1}\) (bilangan rasional).
    3. Merupakan kalimat terbuka dengan \(x, y, z\) sebagai variabel.
    4. Merupakan kalimat deklaratif sebab Tono dan Tini secara khusus mencirikan identitas seseorang. Nilai kebenarannya dapat bernilai true atau false tergantung kenyataan sesungguhnya.

    Pembahasan selanjutnya : Operasi Logika Matematika | Definisi, Tabel Kebenaran dan Contoh

    Mathematical logic is about the forest rather than the trees. When you look at the structure that different mathematical fields have in common, you see overarching themes that make the theory work. –  Hunter Johnson