Definisi Fungsi Determinan dengan Perkalian Elementer

Cover Fungsi Determinan Matriks

Fungsi Determinan / Determinan Matriks

Pada umumnya kita sering melihat fungsi-fungsi seperti \(f(x)=x^2+2x+1\) yang memetakan \((x)\) bilangan real ke bilangan real \(f(x)\). Dari hal tersebut, kemudian para matematikawan mulai melakukan penelitian untuk mencari fungsi yang mengasosiasikan suatu matriks \(X\) dengan bilangan real \(f(x)\). Sehingga munculah fungsi determinan yang nantinya dapat diterapkan dalam mencari invers matriks.

Seki Kowa atau Seki Takakazu adalah matematikawan asal jepang yang pertama kali menemukan determinan, namun masih terbatas pada ordo \(2\times 2\) dan \(3 \times 3\). Akan tetapi muridnya yaitu Laplace berhasil menemukan determinan untuk matriks dengan ordo yang lebih tinggi. Sedangkan istilah “Determinan” pertama kali digunakan oleh Gauss dalam buku berjudul Disquistiones Arithmeticae.

Definisi Fungsi Determinan

Jika \(A\) adalah matriks persegi maka determinan dari matriks \(A\) dapat ditulis \(\text{det}(A)\) atau \(\left|{A}\right|\) yang didefinisikan sebagai jumlahan semua hasil perkalian elementer bertanda dari \(A\).

Lalu apa itu hasil perkalian elementer bertanda?

Eits.. Sebelumnya kita harus mengetahui konsep permutasi terlebih dahulu, karena secara tak langsung merupakan hal penting yang berhubungan dengan hasil perkalian elementer atau bisa dikatakan pondasi dasarnya.

Konsep Permutasi

Pada saat kita duduk dibangku sekolah menengah atas (SMA), kita sudah dikenalkan apa itu permutasi beserta contohnya.

Nah sekarang kita akan sedikit mengulasnya kembali, dimulai dari definisi permutasi hingga pengembangannya.

Baca juga : Konsep Gabungan Matriks Elementer dan OBE untuk Mencari Invers

Definisi 1 (Apa itu permutasi?)

Permutasi dari himpunan bilangan bulat positif \(\{1,2,\dots,n\}\) adalah susunan bilangan-bilangan bulat ini dengan suatu aturan “tanpa menghilangkan” atau “tanpa mengulangi” bilangan-bilangan tersebut.

Contoh 1

Didefinisikan himpunan bilangan-bilangan bulat sebagai berikut :

$$\{1,2,4,5\}$$

Tentukan permutasi dari himpunan di atas?

Penyelesaian :

Ingat tujuan kita adalah mencari susunan berbeda dari bilangan-bilangan bulat pada himpunan di atas tanpa mengulangi dan menghilangkan bilangan-bilangan itu. Salah satu susunannya adalah \((4, 1, 5, 2)\) sedangkan susunan \((2,2,1,5)\) tidak termasuk, karena mengulangi unsur yakni angka \(2\). Lalu bagaimana caranya kita mencari semua susunan yang lainnya?

Untuk mempermudah mencarinya, kita akan menggunakan Pohon Permutasi.

Wah.. semakin menarik ada pohon di matematika. Untuk caranya, perhatikan langkah-langkah berikut :

Langkah 1 :

Kita mulai dari unsur pertama dari kanan yakni angka \(1\). kemudian kita letakkan angka \(1\) di dalam biji pohon.

Langkah ke 1 - Pohon Permutasi

Langkah 2 :

Unsur atau bilangan selain yang ada didalam lingkaran yaitu \(2, 4\) dan \(5\) (ada \(3\) bilangan maka kita dapat \(3\) cabang baru). Kemudian setiap cabang kita isikan secara berturut-turut angka \(2, 4\) dan \(5\).

Langkah ke 2 - Pohon Permutasi

Langkah 3 :

Perhatikan pada cabang pertama (dari kiri) unsur paling atas adalah angka \(2\) sedangkan di bawahnya angka \(1\). Sehingga unsur yang belum ada pada cabang pertama adalah angka \(4\) dan \(5\) (ada \(2\) bilangan maka kita dapat \(2\) anak cabang pada cabang pertama). Kemudian setiap anak cabang pertama kita isikan secara berturut-turut angka \(4\) dan \(5\).

Langkah ke 3 - Pohon Permutasi

Langkah 4 :

Kita lakukan hal yang sama pada cabang kedua dan ketiga, sehingga kita peroleh :

Langkah ke 4 - Pohon Permutasi

Langkah 5 :

Kita buat anak cabang lagi pada ujung cabang yang sudah ada, dan kenapa harus buat lagi? Kita ambil contoh salah satu cabang (merah), jelas bahwa bilangan yang terhubung dengan cabang merah yakni angka \(1, 2\) dan \(4\) karena permutasi dari \((1,2,4,5)\) terdiri dari \(4\) unsur maka haruslah membuat \(1\) anak cabang lagi pada cabang merah dan pada ujung anak cabang merah kita isikan angka \(5\) (selain \(1, 2\) dan \(4\)). Kemudian tidak lupa kita lakukan hal yang sama pada cabang-cabang lainnya.

Langkah ke 5 - Pohon Permutasi

Langkah 6 :

Ingat karena himpunan pada soal memiliki \(4\) unsur/bilangan maka juga akan mempunyai \(4\) pohon permutasi. Sehingga dengan menerapkan cara yang sama dari langkah-\(1\) sampai langkah ke-\(4\) kita peroleh \(3\) pohon lainnya.

Langkah ke 6 - Pohon Permutasi
Langkah ke 6 - Pohon Permutasi (Bagian 2)

Langkah 7 :

Selanjutnya kita nyatakan setiap ranting pada pohon sebagai suatu susunan, berikut caranya :

Langkah ke 7 - Pohon Permutasi

Jadi dari 4 pohon kita dapatkan 24 susunan sebagai berikut :

Pohon ke \(1\)Pohon ke \(2\)Pohon ke \(3\)Pohon ke \(4\)
\((1,2,4,5)\)\((2,1,4,5)\)\((4,1,2,5)\)\((5,1,2,4)\)
\((1,2,5,4)\)\((2,1,5,4)\)\((4,1,5,2)\)\((5,1,4,2)\)
\((1,4,2,5)\)\((2,4,1,5)\)\((4,2,1,5)\)\((5,2,1,4)\)
\((1,4,5,2)\)\((2,4,5,1)\)\((4,2,5,1)\)\((5,2,4,1)\)
\((1,5,2,4)\)\((2,5,1,4)\)\((4,5,1,2)\)\((5,4,1,2)\)
\((1,5,4,2)\)\((2,5,4,1)\)\((4,5,2,1)\)\((5,4,2,1)\)
Catatan

Pada umumnya terdapat cara praktis untuk mencari “banyaknya permutasi/susunan” dari beberapa unsur dalam suatu himpunan yaitu dengan menggunakan Filling Slot (Metode Pengisian Tempat).

Misalkan terdapat himpunan dengan \(k\) unsur, maka kita dapat mencari banyaknya permutasi dari himpunan tersebut dengan mendefinisikan sebuah “ruang” yang terdiri dari \(k\) slot (ada sebanyak \(k\) bagian) sebagai berikut :

$$\left({\boxed{~^~}_{1},\boxed{~^~}_{2},\dots,\boxed{~^~}_{k}}\right)$$

\(\boxed{~^~}_{i}\) menyatakan banyaknya kemungkinan unsur yang menempati slot/kotak ke-\(i\) dengan \(i=\{1,2,\dots,k\}\). Sehingga kita dapat menghitung banyaknya permutasi dengan rumus :

$$\text{Banyaknya permutasi} = \boxed{~^~}_{1}\times\boxed{~^~}_{2}\times\dots\times\boxed{~^~}_{k}$$

Kita coba terapkan metode ini untuk mencari banyaknya permutasi pada contoh \(1\) yang mempunyai himpunan \(\{1,2,4,5\}\).

Pertama kita buat ruang dengan \(4\) kotak mengingat himpunan tersebut mempunyai 4 unsur.

$$\left({\boxed{~^~}_{1},\boxed{~^~}_{2},\boxed{~^~}_{3},\boxed{~^~}_{4}}\right)$$

Banyaknya kemungkinan unsur untuk menempati kotak ke-\(1\) ada \(4\) kemungkinan yaitu \(1,2,4\) atau \(5\). Kemudian banyaknya kemungkinan kotak ke-\(2\) ada \(3\) kemungkinan, mengingat satu unsur telah ditempatkan pada kotak ke-\(1\) begitu pula untuk kotak ke-\(3\) dan ke-\(4\) berturut-turut mempunyai \(2\) dan \(1\) kemungkinan, Sehingga kita dapat mencari banyaknya permutasi :

Banyaknya permutasi = \(\boxed{4}_{1}\times\boxed{3}_{2}\times\boxed{2}_{3}\times\boxed{1}_{4}=24\) buah.

Baca juga :Definisi Matriks Elementer dan Sifatnya

Definisi 2 (Apa itu inversi?)

Misalkan didefinisikan \((p_{1}, p_{2},\dots,p_{k})\) sebagai permutasi dari himpunan dengan \(k\) unsur bilangan bulat. Contohnya jika kita punya himpunan \(\{1,2,3\}\) maka salah satu permutasinya adalah \((3,1,2)\) dengan \(p_{1}=3, p_{2}=1\) dan \(p_{3}=2\).

Dalam permutasi \((p_{1}, p_{2},\dots,p_{k})\), dikatakan terjadi sebuah inversi (inversion) apabila sebuah bilangan bulat yang lebih besar mendahului sebuah bilangan bulat yang lebih kecil, atau dapat kita katakan terjadi inversi jika terdapat \(p_{i}>p_{j}\) dengan \(i<j\) dan \(i,j \in \{1,2,\dots,k\}\).

Contoh 2

Tentukan banyaknya inversi dalam permutasi \((4,1,2,0,5)\) ?

Penyelesaian :

Pertama kita cermati banyaknya bilangan bulat yang lebih kecil daripada \(p_{1} = 4\), dapat kita lihat jelas terdapat \(3\) bilangan yang lebih kecil yakni \(p_{2}=1, p_{3}=2\) dan \(p_{4}=0\).

Langkah kedua kita lakukan hal yang sama untuk \(p_{2}=1, p_{3}=2, p_{4}=0\) dan \(p_{5}=5\), kemudian jumlahkan seluruh inversinya. Lebih jelasnya perhatikan tabel berikut :

UnsurLebih Besar DariJumlah
\(p_{1}=4\)\(p_{2}, p_{3}, p_{4}\)4
\(p_{2}=1\)\(p_{4}\)1
\(p_{3}=2\)\(p_{4}\)1
\(p_{4}=0\)Tidak ada0
\(p_{5}=5\)Tidak ada0
Banyaknya Inversi 6

Definisi 3 (Permutasi Genap dan Ganjil)

Sebuah permutasi \((p_{1}, p_{2},\dots,p_{k})\) dinamakan permutasi genap (even) jika jumlah inversi dalam permutasi tersebut genap. Sebaliknya, sebuah permutasi dinamakan ganjil (odd) jika jumlah inversi dalam permutasi tersebut ganjil.

Contoh 3

Permutasi \((2,5,0,3)\) adalah permutasi ganjil karena banyaknya inversi \(1 + 2 + 0 + 0 = 3\) (ganjil)

Definisi Hasil Perkalian Elementer

A matriks persegi \(n \times n\) dan kita tuliskan sebagai berikut:

$$A=\left[{\begin{array}{cccc}a_{11}&a_{12}&\dots&a_{1n}\\a_{21}&a_{22}&\dots&a_{2n}\\\vdots&\vdots&\ddots&\vdots\\a_{n1}&a_{n2}&\dots&a_{nn}\end{array}}\right]$$

Maka hasil perkalian elementer dari matriks A adalah hasil perkalian elemen-elemen pada A yang letaknya sebaris atau sekolom. Semisal \(A=[a_{ij}]_{3 \times 3}\) maka salah satu hasil perkalian elementernya yaitu \(a_{12}a_{23}a_{32}\).

Lalu bagaimana cara mencari semua hasil perkalian elementer?

Untuk lebih jelasnya simak contoh berikut :

Contoh 4

Didefinisikan matriks persegi \(A\) dengan ordo \(3 \times 3\) sebagai berikut :

$$A=\left[{\begin{array}{ccc}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{array}}\right]$$

Tentukan semua hasil perkalian elementernya.

Penyelesaian :

Karena matriks A mempunyai ordo \(3 \times 3\) maka kita tuliskan bentuk acuan perkalian elementernya sebagai perkalian \(3\) elemen pada matriks A yakni \(a_{1p_{1}}a_{2p_{2}}a_{3p_{3}}\). Kemudian kita ganti tanda \(p_{1}, p_{2}\) dan \(p_{3}\) dengan seluruh permutasi dari \((1,2,3)\). Kenapa 1, 2 dan 3? karena kotak \(p_{1}, p_{2}\) dan \(p_{3}\) mewakili urutan kolom dan banyaknya kolom pada matriks A ada \(3\), yaitu kolom ke-\(1, 2\) dan \(3\). Untuk lebih jelasnya perhatikan tabel di bawah ini :

Permutasi \((1,2,3)\)Ubah \(a_{1p_{1}}a_{2p_{2}}a_{3p_{3}}\)
\((1,2,3)\)\(a_{11}a_{22}a_{33}\)
\((1,3,2)\)\(a_{11}a_{23}a_{32}\)
\((2,1,3)\)\(a_{12}a_{21}a_{33}\)
\((2,3,1)\)\(a_{12}a_{23}a_{31}\)
\((3,1,2)\)\(a_{13}a_{21}a_{32}\)
\((3,2,1)\)\(a_{13}a_{22}a_{31}\)

Catatan

Apabila matriks \(A\) berordo \(n\times n\), maka seluruh hasil perkalian elementer dalam matriks ada sebanyak \(n!\). Karena banyaknya hasil kali elementer sama dengan banyaknya permutasi dari \((p_{1}, p_{2},\dots,p_{n})\) yaitu dengan menggunakan metode filling slot didapat banyaknya permutasi = \(n(n-1)\dots (2)(1)= n!\).

Baca juga : Sistem Persamaan Linear Homogen dan Sifatnya

Hasil Perkalian Elementer Bertanda untuk Mencari Determinan

Sedikit berbeda dari sebelumnya, hasil perkalian elementer bertanda dari matriks \(A\) persegi yang berordo \(n \times n\) adalah hasil perkalian elementer \(a_{1p_{1}}a_{2p_{2}}\dots a_{np_{n}}\) yang dikalikan dengan \(+1\) jika permutasinya genap dan dikalikan dengan \(-1\) jika permutasinya ganjil.

Contoh 5

Berdasarkan contoh \(4\) tentukan semua hasil perkalian elementer bertandanya.

Penyelesaian :

Untuk mempermudah mencari hasil perkalian elementer bertanda, kita kembangkan tabel pada contoh \(4\) sehingga :

PermutasiInversiHasil Perkalian Elementer Bertanda
\((1,2,3)\)0\(+a_{11}a_{22}a_{33}\)
\((1,3,2)\)1\(-a_{11}a_{23}a_{32}\)
\((2,1,3)\)1\(-a_{12}a_{21}a_{33}\)
\((2,3,1)\)2\(+a_{12}a_{23}a_{31}\)
\((3,1,2)\)2\(+a_{13}a_{21}a_{32}\)
\((3,2,1)\)3\(-a_{13}a_{22}a_{31}\)

Lalu apa hubungannya dengan fungsi determinan?

Jadi jika \(A\) adalah matriks persegi yang berordo \(n\times n\) maka Determinan/Fungsi Determinan didefinisikan sebagai jumlahan semua hasil perkalian elementer bertanda dari matriks \(A\). Atau bisa ditulis :

$$\text{det}(A)=\sum \pm a_{1p_{1}}a_{2p_{2}}\dots a_{np_{n}}$$

Contoh 6

Diberikan matriks \(A\) sebagai berikut :

$$A=\left[{\begin{array}{ccc}-1&1&0\\0&2&1\\2&-2&-1\end{array}}\right]$$

Tentukan determinan dari matriks \(A\) tersebut.

Penyelesaian :

Berhubung pada contoh 5, matriks A berordo \(3 \times 3\) sudah dicari semua hasil perkalian elementer bertandanya maka kita peroleh :

$$\text{det}(A)=\sum \pm a_{1p_{1}}a_{2p_{2}}a_{3p_{3}}$$

$$\text{det}(A)=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{13}a_{22}a_{31}$$

$$\text{det}(A)=(-1)(2)(-1)+(1)(1)(2)+(0)(0)(-2)-(-1)(1)(-2)-(1)(0)(-1)-(0)(2)(2)$$

$$\text{det}(A)=2+2+0-2-0-0=2$$

Sebenarnya terdapat metode yang lebih praktis dalam mencari determinan matriks \(A\), yaitu dengan Metode Sarrus.

Konsep Gabungan Matriks Elementer dan OBE untuk Mencari Invers

Penerapan Matriks Elementer

Penerapan Matriks Elementer

Pada pembahasan sebelumnya, kita sudah mengenal tentang Definisi Matriks Elementer dan Sifatnya. Nah sekarang ini kita akan membahas lebih lanjut mengenai kegunaan dari matriks elementer.

Dalam mencari invers suatu matriks selain menggunakan adjoint, kita juga bisa menggunakan konsep gabungan antara matriks elementer dan metode eliminasi gauss-jordan.

Lalu bagaimana caranya ?

Eits.. Sebelum kita tahu caranya, kita harus tahu konsep dasarnya dulu. Pertama kita cari tahu sifat-sifat matriks invers.

Sifat-sifat Matriks Invers

Definisi 1

Jika \(A\) adalah matriks persegi, dan jika terdapat matriks \(B\) sehingga \(AB=BA=I\) maka matriks \(A\) dikatakan dapat dibalik (invertible) dan \(B\) disebut juga invers dari \(A\) atau dapat ditulis \(B=A^{-1}\).

Teorema 1 (Sifat dari Matriks Invers)

  1. Jika matriks \(A\) dapat dibalik maka \(A^{-1}\) dapat dibalik dan berlaku :

    $$(A^{-1})^{-1}=A$$

    Bukti : Matriks \(A\) dapat dibalik sehingga berdasarkan definisi 1 maka \(AA^{-1}=A^{-1}A=I\) dan karena  \(A^{-1}\) dapat dibalik maka \((A^{-1})^{-1}=A\).

  2. Jika \(A\) matriks yang dapat dibalik dan \(c\) adalah skalar yang tidak sama dengan nol, maka \(cA\) dapat dibalik dan berlaku :

    $$(cA)^{-1}=\frac{1}{c}A^{-1}$$

    Bukti : Berdasarkan definisi 1, pembuktian bagian ini equivalen dengan cukup membuktikan persamaan \((cA)(\frac{1}{c}A^{-1})=(\frac{1}{c}A^{-1})(cA)=I\). Sehingga berdasarkan sifat-sifat operasi matriks kita peroleh :

    $$(cA)(\frac{1}{c}A^{-1})=\frac{1}{c}(cA)A^{-1}=(\frac{1}{c}c)AA^{-1}=(1)I=I\dots(i)$$

    Kemudian dengan cara yang sama kita peroleh \((\frac{1}{c}A^{-1})(cA)=I\dots(ii)\) sehingga dari persamaan \((i)\) dan \((ii)\) kita dapatkan \((cA)(\frac{1}{c}A^{-1})=(\frac{1}{c}A^{-1})(cA)=I\), sesuai yang diminta.

  3. Jika matriks \(A\) dan \(B\) dapat dibalik dan memiliki ordo yang sama, maka \(AB\) dapat dibalik dan berlaku :

    $$(AB)^{-1}=B^{-1}A^{-1}$$

    Bukti : Kita gunakan cara yang seperti sebelumnya yaitu berdasarkan definisi 1, kita cukup membuktikan bahwa \((AB)(B^{-1}A^{-1})=(B^{-1}A^{-1})(AB)=I\), perhatikan persamaan berikut :

    $$(AB)(B^{-1}A^{-1})=A(BB^{-1})A^{-1}=A(I)A^{-1}=AA^{-1}=I\dots(i)$$

    Kemudian dengan cara yang sama kita peroleh \((B^{-1}A^{-1})(AB)=I\dots(ii)\) sehingga dari persamaan \((i)\) dan \((ii)\) kita dapatkan \((AB)(B^{-1}A^{-1})=(B^{-1}A^{-1})(AB)=I\), sesuai yang diminta.

  4. Jika A adalah matriks yang dapat dibalik, maka \(A^{T}\) (Transpose Matriks) dapat dibalik dan berlaku :

    $$(A^{T})^{-1}=(A^{-1})^{T}$$

    Bukti : Berdasarkan sifat-sifat operasi matriks terhadap operasi transpose maka :

    $$(A^{-1})^{T}A^{T}=(AA^{-1})^{T}$$

    $$\Leftrightarrow (A^{-1})^{T}A^{T}=I^T=I\dots(i)$$

    Kemudian dengan cara yang sama kita peroleh \(A^{T}(A^{-1})^{T}=I\dots(ii)\) sehingga dari persamaan \((i)\) dan \((ii)\) kita dapatkan \((A^{-1})^{T}A^{T}=A^{T}(A^{-1})^{T}=I\), kemudian berdasarkan definisi 1, didapat \((A^{T})^{-1}=(A^{-1})^{T}\).

  5. Jika matriks \(A\) dapat dibalik dan \(c\) adalah bilangan bulat tak negatif maka \(A^{c}\) dapat dibalik dan berlaku :

    $$(A^{c})^{-1}=(A^{-1})^{c}$$

    Bukti : Dengan berdasarkan sifat-sifat operasi matriks terhadap operasi perkalian maka :

    $$A^{c}(A^{-1})^{c}=A^{c}A^{-c}=A^{c+(-c)}=A^{0}=I\dots(i)$$

    Kemudian dengan cara yang sama kita peroleh \((A^{-1})^{c}A^{c}=I\dots(ii)\) sehingga dari persamaan \((i)\) dan \((ii)\) kita dapatkan \(A^{c}(A^{-1})^{c}=(A^{-1})^{c}A^{c}=I\), sehingga berdasarkan definisi 1, kita dapatkan \((A^{c})^{-1}=(A^{-1})^{c}\).

Corollary 1 : Akibat dari teorema 1 bagian (c), jika \(A_{1},~A_{2},\dots,~A_{k}\) adalah matriks-matriks persegi dengan ordo yang sama dan dapat dibalik, maka hasil kali matriks-matriks tersebut \((A_{1}A_{2}\dots A_{k})\) juga dapat dibalik atau dapat ditulis :

$$(A_{1}A_{2}\dots A_{k})^{-1}=A_{k}^{-1}A_{k-1}^{-1}\dots A_{1}^{-1}$$

Teorema 2 (Teorema Dasar untuk Matriks yang Invertible)

Jika \(A\) adalah matriks persegi \(n \times n\) kemudian \(\vec{x}\) dan \(\vec{b}\) adalah vektor kolom \(n\times 1\), maka pernyataan-pernyataan berikut saling ekuivalen (semuanya benar atau semuanya salah).

  1. Matriks \(A\) bersifat invertible (dapat dibalik).
  2. \(A\vec{x}=\vec{b}\) mempunyai solusi unik untuk setiap \(\vec{b} \in \mathbb{R}^{n}\).
  3. \(A\vec{x}=\vec{0}\) hanya mempunyai solusi pemecahan trivial.
  4. Bentuk eselon baris tereduksi dari matriks \(A\) adalah matriks satuan \(I_{n\times n}\).
  5. \(A\) dapat dinyatakan sebagai hasil kali beberapa matriks elementer.

Bukti :

Untuk membuktikan pernyataan-pernyataan di atas saling ekuivalen, kita cukup membuktikan rantai implikasi berikut : \((a)\Rightarrow(b)\Rightarrow(c)\Rightarrow(d)\Rightarrow(e)\Rightarrow(a)\).

Langkah 1

\((a)\Rightarrow(b)\), karena \(A\) dapat dibalik maka berlaku \(A(A^{-1}\vec{b})=(AA^{-1})\vec{b}=I\vec{b}=\vec{b}\), kemudian kita dapat mengatur \(\vec{x}=A^{-1}\vec{b}\) yang merupakan solusi dari  persamaan \(A\vec{x}=\vec{b}\). Lalu kita pastikan bahwa solusi dari persamaan tersebut tunggal yakni \(\vec{x}=A^{-1}\vec{b}\). Kita mulai dari persamaan awal :

$$A\vec{x}=\vec{b}$$

$$\Leftrightarrow A^{-1}A\vec{x}=A^{-1}\vec{b}$$

$$\Leftrightarrow I\vec{x}=A^{-1}\vec{b}$$

$$\Leftrightarrow \vec{x}=A^{-1}\vec{b}$$

Sehingga jelaslah bahwa penulisan \(\vec{x}=A^{-1}\vec{b}\) bersifat tunggal.

Langkah 2

\((b)\Rightarrow(c)\), berdasarkan pernyataan \((b)\) dengan mengatur \(\vec{b}=\vec{0}\) maka kita dapatkan solusi tunggal yaitu :

$$A\vec{x}=\vec{0}$$

$$\Leftrightarrow A^{-1}A\vec{x}=A^{-1}\vec{0}$$

$$\Leftrightarrow I\vec{x}=\vec{0}$$

$$\Leftrightarrow \vec{x}=\vec{0}=\left[{\begin{array}{c}0\\0\\\vdots\\0\end{array}}\right]$$

Jadi persamaan \(A\vec{x}=\vec{0}\) hanya mempunyai solusi trivial \(\vec{x}=\vec{0}\).

Langkah 3

\((c)\Rightarrow(d)\), pada pembahasan sebelumnya mengenai SIstem Persamaan Linear Homogen, kita tahu bahwa persamaan \(A\vec{x}=\vec{0}\) dapat kita tuliskan sebagai berikut :

$$a_{11}x_{1}+a_{12}x_{2}+\dots+a_{1n}x_{n} =0$$
$$a_{21}x_{1}+a_{22}x_{2}+\dots+a_{2n}x_{n} =0$$

$$\vdots$$

$$a_{n1}x_{1}+a_{n2}x_{2}+\dots+a_{nn}x_{n} =0$$

Kemudian kita representasikan kedalam bentuk matriks :

$$\left[{\begin{array}{cccc|c}a_{11}&a_{12}&\dots&a_{1n}&0\\a_{21}&a_{22}&\dots&a_{2n}&0\\\vdots&\vdots&\ddots&\vdots&\vdots\\a_{n1}&a_{n2}&\dots&a_{nn}&0\end{array}}\right]$$

Karena solusi dari persamaan \(A\vec{x}=\vec{0}\) tunggal, maka hanya mempunyai pemecahan trivial \(x_{1}=0,~x_{2}=0,\dots,~x_{n}=0\). Sehingga jika kita gunakan eliminasi gauss jordan kita akan mendapatkan bentuk eselon baris tereduksi sebagai berikut :

$$\left[{\begin{array}{cccc|c}1&0&\dots&0&0\\0&1&\dots&0&0\\\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&\dots&1&0\end{array}}\right]$$

Bentuk di atas akan senilai dengan :

$$\left[{\begin{array}{cccc}1&0&\dots&0\\0&1&\dots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\dots&1\end{array}}\right]\left[{\begin{array}{c}x_{1}\\x_{2}\\\vdots\\x_{n}\end{array}}\right]=\left[{\begin{array}{c}0\\0\\\vdots\\0\end{array}}\right]$$

Dari bentuk terakhir di atas dapat kita simpulkan bahwa \(A\) dapat direduksi menjadi \(I_{n\times n}\) dengan menggunakan operasi baris elementer.

Langkah 4

\((d)\Rightarrow(e)\Rightarrow(a)\), berdasarkan \((d)\) bahwa \(A\) dapat direduksi menjadi \(I_{n\times n}\) dengan urutan berhingga dari operasi-operasi baris elementer (kita misalkan terdapat \(k\) kali OBE).

Kemudian jika didefinisikan \(L_{i}\) menyatakan operasi baris elementer yang dilakukan pada urutan ke-\(i\) dengan \(i=\{1,2,\dots,k\}\). Maka kita dapat mencari matriks elementer \(E_{1},~E_{2},\dots,~E_{k}\) sebagai berikut :

$$I\xrightarrow[]{L_{1}}E_{1}$$

$$I\xrightarrow[]{L_{2}}E_{2}$$

$$\vdots$$

$$I\xrightarrow[]{L_{k}}E_{k}$$

Mengingat kembali jika matriks elementer \(E\) dihasilkan dengan melakukan satu kali Operasi Baris Elementer(OBE) tertentu pada matriks identitas \(I_{n\times n}\). Kemudian jika OBE yang sama dikenakan pada sebarang matriks \(B_{n\times m}\) maka hasilnya akan sama dengan hasil kali \(EB\), lihat contohnya disini.

Sehingga berdasarkan pernyataan di atas, jika matriks \(A\) kita kenakan OBE dari urutan ke-\(1\) sampai ke-\(k\) secara berturut-turut, maka kita peroleh hubungan :

$$A\xrightarrow[]{L_{1}}E_{1}A$$

$$E_{1}A\xrightarrow[]{L_{2}}E_{2}E_{1}A$$

$$\vdots$$

$$E_{k-1}\dots E_{2}E_{1}A\xrightarrow[]{L_{k}}E_{k}\dots E_{2}E_{1}A$$

Karena bentuk eselon baris tereduksi dari \(A\) adalah \(I_{n\times n}\) maka \(E_{k}\dots E_{2}E_{1}A=I_{n\times n}\dots(*)\). Kemudian karena matriks elementer dapat dibalik dan inversnya berupa matriks elementer, maka dengan mengalikan kedua ruas persamaan \((*)\) dengan  matriks elementer \(E_{k}^{-1},\dots,~E_{2}^{-1},~E_{1}^{-1}\) secara berturut-turut didapat :

$$A=E_{1}^{-1}E_{2}^{-1}\dots E_{k}^{1}I_{n\times n}^{-1}$$

Karena \(A\) dapat dinyatakan sebagai hasil kali matriks-matriks elementer yang dapat dibalik maka dapat disimpulkan \(A\) dapat dibalik. Untuk melihat lebih jelas, kita gunakan corollary 1 sehingga didapat :

$$A^{-1}=(E_{1}^{-1}E_{2}^{-1}\dots E_{k}^{-1}I_{n\times n}^{-1})^{-1}$$

$$\Leftrightarrow A^{-1}=(I_{n\times n}^{-1})^{-1}(E_{k}^{-1})^{-1}\dots (E_{2}^{-1})^{-1}(E_{1}^{-1})^{-1}$$

$$\Leftrightarrow A^{-1}=I_{n\times n}E_{k}\dots E_{2}E_{1}$$

$$\Leftrightarrow A^{-1}=E_{k}\dots E_{2}E_{1}I_{n\times n}\dots(**)$$

Konsep Mencari Invers dengan Matriks Elementer

JIka kita perhatikan persamaan \((**)\) maka kita dapat memperoleh \(A^{-1}\) dengan mengalikan \(I_{n\times n}\) dari sebelah kiri berturut-turut dengan \(E_{1},~E_{2},\dots,~E_{k}\). Kemudian berdasarkan persamaan \((*)\) dan \((**)\) maka dapat kita simpulkan bahwa urutan langkah-langkah OBE yang dilakukan pada \(A\) akan membawa kebentuk matriks satuan \(I_{n \times n}\) dan langkah-langkah yang sama jika dikenakan pada matriks satuan \(I_{n \times n}\) akan menghasilkan \(A^{-1}\). Untuk lebih jelasnya dapat kita tuliskan sebagai berikut :

$$\left[{A\mid I}\right]\xrightarrow[]{L_{1},~L_{2},\dots,~L_{k}}\left[{I\mid A^{-1}}\right]$$

Contoh 1 (Dapat Dibalik)

Didefinisikan matriks \(A\) sebagai berikut :

$$A=\left[{\begin{array}{ccc}1&4&5\\7&2&8\\2&0&1\end{array}}\right]$$

Tentukan invers matriks tersebut (bila ada).

Penyelesaian :

Syarat \(A\) matriks persegi sudah terpenuhi, sehingga kita dapat menuliskan :

$$\left[{\begin{array}{ccc|ccc}\color{blue}{1}&\color{blue}{4}&\color{blue}{5}&\color{red}{1}&\color{red}{0}&\color{red}{0}\\\color{blue}{7}&\color{blue}{2}&\color{blue}{8}&\color{red}{0}&\color{red}{1}&\color{red}{0}\\\color{blue}{2}&\color{blue}{0}&\color{blue}{1}&\color{red}{0}&\color{red}{0}&\color{red}{1}\end{array}}\right]$$

Langkah 1

Perlu diingat bahwa tujuan kita adalah mereduksi matriks \(A\) (biru) sehingga membentuk eselon baris tereduksi, maka kita akan menggunakan metode gauss-jordan dengan OBE.

Karena pada baris pertama sudah terdapat 1 utama, maka kita sederhanakan baris ke-\(2\) dengan operasi \(-7R_{1}+R_{2}\rightarrow R_{2}\) sehingga kita peroleh :

$$\left[{\begin{array}{ccc|ccc}\color{blue}{1}&\color{blue}{4}&\color{blue}{5}&\color{red}{1}&\color{red}{0}&\color{red}{0}\\\color{blue}{0}&\color{blue}{-26}&\color{blue}{-27}&\color{red}{-7}&\color{red}{1}&\color{red}{0}\\\color{blue}{2}&\color{blue}{0}&\color{blue}{1}&\color{red}{0}&\color{red}{0}&\color{red}{1}\end{array}}\right]$$

Begitu pula pada baris ke-\(3\) kita sederhanakan dengan operasi \(-2R_{1}+R_{3}\rightarrow R_{3}\)

$$\left[{\begin{array}{ccc|ccc}\color{blue}{1}&\color{blue}{4}&\color{blue}{5}&\color{red}{1}&\color{red}{0}&\color{red}{0}\\\color{blue}{0}&\color{blue}{-26}&\color{blue}{-27}&\color{red}{-7}&\color{red}{1}&\color{red}{0}\\\color{blue}{0}&\color{blue}{-8}&\color{blue}{-9}&\color{red}{-2}&\color{red}{0}&\color{red}{1}\end{array}}\right]$$

Langkah 2

Kita sederhanakan lagi baris ke-2 dengan operasi \(-3R_{3}+R_{2}\rightarrow R_{2}\) sehingga didapat :

$$\left[{\begin{array}{ccc|ccc}\color{blue}{1}&\color{blue}{4}&\color{blue}{5}&\color{red}{1}&\color{red}{0}&\color{red}{0}\\\color{blue}{0}&\color{blue}{-2}&\color{blue}{0}&\color{red}{-1}&\color{red}{1}&\color{red}{-3}\\\color{blue}{0}&\color{blue}{-8}&\color{blue}{-9}&\color{red}{-2}&\color{red}{0}&\color{red}{1}\end{array}}\right]$$

Selanjutnya kita buat 1 utama pada baris ke-2 dengan operasi \(-\frac{1}{2}R_{2}\rightarrow R_{2}\)

$$\left[{\begin{array}{ccc|ccc}\color{blue}{1}&\color{blue}{4}&\color{blue}{5}&\color{red}{1}&\color{red}{0}&\color{red}{0}\\\color{blue}{0}&\color{blue}{1}&\color{blue}{0}&\color{red}{\frac{1}{2}}&\color{red}{-\frac{1}{2}}&\color{red}{\frac{3}{2}}\\\color{blue}{0}&\color{blue}{-8}&\color{blue}{-9}&\color{red}{-2}&\color{red}{0}&\color{red}{1}\end{array}}\right]$$

Dan tidak lupa kita sederhanakan baris ke-\(3\) dengan operasi \(8R_{2}+R_{3}\rightarrow R_{3}\)

$$\left[{\begin{array}{ccc|ccc}\color{blue}{1}&\color{blue}{4}&\color{blue}{5}&\color{red}{1}&\color{red}{0}&\color{red}{0}\\\color{blue}{0}&\color{blue}{1}&\color{blue}{0}&\color{red}{\frac{1}{2}}&\color{red}{-\frac{1}{2}}&\color{red}{\frac{3}{2}}\\\color{blue}{0}&\color{blue}{0}&\color{blue}{-9}&\color{red}{2}&\color{red}{-4}&\color{red}{13}\end{array}}\right]$$

Langkah 3

Kita buat 1 utama pada baris ke-3 dengan operasi \(-\frac{1}{9}R_{3}\rightarrow R_{3}\)

$$\left[{\begin{array}{ccc|ccc}\color{blue}{1}&\color{blue}{4}&\color{blue}{5}&\color{red}{1}&\color{red}{0}&\color{red}{0}\\\color{blue}{0}&\color{blue}{1}&\color{blue}{0}&\color{red}{\frac{1}{2}}&\color{red}{-\frac{1}{2}}&\color{red}{\frac{3}{2}}\\\color{blue}{0}&\color{blue}{0}&\color{blue}{1}&\color{red}{-\frac{2}{9}}&\color{red}{\frac{4}{9}}&\color{red}{-\frac{13}{9}}\end{array}}\right]$$

Disusul penyederhanaan baris ke-\(1\) dengan operasi \(-4R_{2}+R_{1}\rightarrow R_{1}\)

$$\left[{\begin{array}{ccc|ccc}\color{blue}{1}&\color{blue}{0}&\color{blue}{5}&\color{red}{-1}&\color{red}{2}&\color{red}{-6}\\\color{blue}{0}&\color{blue}{1}&\color{blue}{0}&\color{red}{\frac{1}{2}}&\color{red}{-\frac{1}{2}}&\color{red}{\frac{3}{2}}\\\color{blue}{0}&\color{blue}{0}&\color{blue}{1}&\color{red}{-\frac{2}{9}}&\color{red}{\frac{4}{9}}&\color{red}{-\frac{13}{9}}\end{array}}\right]$$

Dan juga disederhanakan lagi dengan operasi \(-5R_{3}+R_{1}\rightarrow R_{1}\) untuk memperoleh hasil akhir :

$$\left[{\begin{array}{ccc|ccc}\color{blue}{1}&\color{blue}{0}&\color{blue}{0}&\color{red}{\frac{1}{9}}&\color{red}{-\frac{2}{9}}&\color{red}{\frac{11}{9}}\\\color{blue}{0}&\color{blue}{1}&\color{blue}{0}&\color{red}{\frac{1}{2}}&\color{red}{-\frac{1}{2}}&\color{red}{\frac{3}{2}}\\\color{blue}{0}&\color{blue}{0}&\color{blue}{1}&\color{red}{-\frac{2}{9}}&\color{red}{\frac{4}{9}}&\color{red}{-\frac{13}{9}}\end{array}}\right]$$

Jadi dari bentuk matriks di atas diperoleh :

$$A^{-1}=\left[{\begin{array}{ccc}\color{red}{\frac{1}{9}}&\color{red}{-\frac{2}{9}}&\color{red}{\frac{11}{9}}\\\color{red}{\frac{1}{2}}&\color{red}{-\frac{1}{2}}&\color{red}{\frac{3}{2}}\\\color{red}{-\frac{2}{9}}&\color{red}{\frac{4}{9}}&\color{red}{-\frac{13}{9}}\end{array}}\right]$$

Contoh 2 (Tidak Dapat Dibalik)

Didefinisikan matriks \(A\) sebagai berikut :

$$A=\left[{\begin{array}{ccc}2&-3&-5\\1&4&0\\4&5&-5\end{array}}\right]$$

Tentukan invers matriks tersebut (bila ada).

Penyelesaian :

Pertama kita nyatakan dalam bentuk :

$$\left[{\begin{array}{ccc|ccc}\color{blue}{2}&\color{blue}{-3}&\color{blue}{-5}&\color{red}{1}&\color{red}{0}&\color{red}{0}\\\color{blue}{1}&\color{blue}{4}&\color{blue}{0}&\color{red}{0}&\color{red}{1}&\color{red}{0}\\\color{blue}{4}&\color{blue}{5}&\color{blue}{-5}&\color{red}{0}&\color{red}{0}&\color{red}{1}\end{array}}\right]$$

Langkah 1

Kita tentukan 1 utama dengan operasi \(R_{2}\leftrightarrow R_{1}\)

$$\left[{\begin{array}{ccc|ccc}\color{blue}{1}&\color{blue}{4}&\color{blue}{0}&\color{red}{0}&\color{red}{1}&\color{red}{0}\\\color{blue}{2}&\color{blue}{-3}&\color{blue}{-5}&\color{red}{1}&\color{red}{0}&\color{red}{0}\\\color{blue}{4}&\color{blue}{5}&\color{blue}{-5}&\color{red}{0}&\color{red}{0}&\color{red}{1}\end{array}}\right]$$

Kita sederhanakan baris ke-\(2\) dengan operasi \(-2R_{1}+R_{2}\rightarrow R_{2}\)

$$\left[{\begin{array}{ccc|ccc}\color{blue}{1}&\color{blue}{4}&\color{blue}{0}&\color{red}{0}&\color{red}{1}&\color{red}{0}\\\color{blue}{0}&\color{blue}{-11}&\color{blue}{-5}&\color{red}{1}&\color{red}{-2}&\color{red}{0}\\\color{blue}{4}&\color{blue}{5}&\color{blue}{-5}&\color{red}{0}&\color{red}{0}&\color{red}{1}\end{array}}\right]$$

Kemudian sederhanakan baris ke-\(3\) dengan operasi \(-4R_{1}+R_{3}\rightarrow R_{3}\)

$$\left[{\begin{array}{ccc|ccc}\color{blue}{1}&\color{blue}{4}&\color{blue}{0}&\color{red}{0}&\color{red}{1}&\color{red}{0}\\\color{blue}{0}&\color{blue}{-11}&\color{blue}{-5}&\color{red}{1}&\color{red}{-2}&\color{red}{0}\\\color{blue}{0}&\color{blue}{-11}&\color{blue}{-5}&\color{red}{0}&\color{red}{-4}&\color{red}{1}\end{array}}\right]$$

Langkah 2

Kita sederhanakan baris ke-\(3\) dengan operasi \(-1R_{2}+R_{3}\rightarrow R_{3}\) dan kita dapatkan sesuatu yang unik :

$$\left[{\begin{array}{ccc|ccc}\color{blue}{1}&\color{blue}{4}&\color{blue}{0}&\color{red}{0}&\color{red}{1}&\color{red}{0}\\\color{blue}{0}&\color{blue}{-11}&\color{blue}{-5}&\color{red}{1}&\color{red}{-2}&\color{red}{0}\\\color{blue}{0}&\color{blue}{0}&\color{blue}{0}&\color{red}{-1}&\color{red}{-2}&\color{red}{1}\end{array}}\right]$$

Kita perhatikan baris ketiga (biru) terdapat baris bilangan nol, akibatnya \(A\) tidak dapat dibentuk menjadi matriks satuan sehingga berdasarkan teorema 2, akibatnya \(A\) tidak dapat dibalik.

Definisi Matriks Elementer dan Sifatnya

Definisi dan Sifat dari Matriks Elementer

Definisi Matriks Elementer

Matriks elementer adalah matriks persegi \(n \times n\) yang dinyatakan sebagai hasil matriks satuan \(n \times n\) yang dikenakan sebuah operasi baris elementer.

Lalu bagaimana cara membentuk matriks elementer ?

Mengingat kembali dalam Operasi Baris Elementer (OBE) terdapat 3 operasi dasar, sehingga kita peroleh 3 cara untuk membuat matriks elementer yaitu :

  1. Dengan operasi mempertukarkan dua baris pada matriks satuan, dinotasikan : \(R_{i} \leftrightarrow R_{j}\)

    Contoh :

    Misalkan kita punya matriks satuan \(I_{3 \times 3}\) dan kita akan menggunakan operasi \(R_{1} \leftrightarrow R_{3}\), sehingga kita dapatkan matriks elementer (merah) :

    $$\left[{\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}}\right]\rightarrow\color{red}{\left[{\begin{array}{ccc}0&0&1\\0&1&0\\1&0&0\end{array}}\right]}$$
  2. Mengalikan sebuah baris dengan konstanta/skalar, selama skalar bukan nol, dinotasikan : \(kR_{i} \rightarrow R_{1}\)

    Contoh :

    Jika kita punya matriks \(I_{2 \times 2}\) dan dikenakan operasi \(-\frac{\sqrt{3}}{2}R_{2} \rightarrow R_{2}\) maka kita peroleh matriks elementer sebagai berikut :

    $$\left[{\begin{array}{cc}1&0\\0&1\end{array}}\right]\rightarrow\color{red}{\left[{\begin{array}{cc}1&0\\0&-\frac{\sqrt{3}}{2}\end{array}}\right]}$$

  3. Menambahkan kelipatan dari suatu baris dengan baris lain, dinotasikan : \(kR_{1} +R_{j} \rightarrow R_{j}\)

    Contoh :

    Jika matriks satuan \(I_{4 \times 4}\) dikenakan operasi \(\pi R_{2} +R_{3} \rightarrow R_{3}\) maka akan diperoleh :

    $$\left[{\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{array}}\right]\rightarrow\color{red}{\left[{\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&\pi&1&0\\0&0&0&1\end{array}}\right]}$$

Setelah mengetahui definisi dan bentuk matriks elementer selanjutnya kita akan mempelajari sifat-sifatnya melalui teorema-teorema berikut. Catatan : Untuk selanjutnya untuk penamaan matriks elementer kita akan menggunakan simbol \(E\).

Teorema 1

Misalkan \(E\) adalah matriks elementer yang dibentuk dengan melakukan sebuah operasi baris elementer tertentu pada \(I_{n\times n}\) (matriks satuan). Jika operasi baris elementer yang sama dikenakan pada sebarang matriks \(A_{n\times m}\) maka hasilnya sama dengan hasil kali \(EA\).

Contoh penerapan dari teorema 1 :

Misalkan didefinisikan matriks \(A\) dan \(E\) sebagai berikut :

$$A=\left[{\begin{array}{cccc}2&-4&7&1\\3&-1&0&1\\-3&2&5&0\end{array}}\right]$$

$$I_{3\times 3} \xrightarrow[ ]{3R_{3}+R_{1}\rightarrow R_{1}} E=\left[{\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&0&3\\0&1&0\\0&0&1\end{array}}\right]$$

Kita akan mengecek kebenaran teorema 1 dari contoh ini. Apakah benar :

$$A \xrightarrow[ ]{3R_{3}+R_{1}\rightarrow R_{1}} EA$$

Untuk pernyataan di atas, dengan operasi perkalian antar matriks kita dapatkan :

$$EA=\left[{\begin{array}{ccc}1&0&3\\0&1&0\\0&0&1\end{array}}\right]\left[{\begin{array}{cccc}2&-4&7&1\\3&-1&0&1\\-3&2&5&0\end{array}}\right]=\left[{\begin{array}{cccc}-7&2&22&1\\3&-1&0&1\\-3&2&5&0\end{array}}\right]\dots(i)$$

Kemudian kita kenakan matriks \(A\) dengan OBE yang sama \(3R_{3}+R_{1}\rightarrow R_{1}\) sehingga kita peroleh :

$$\left[{\begin{array}{cccc}2&-4&7&1\\3&-1&0&1\\-3&2&5&0\end{array}}\right]\rightarrow\left[{\begin{array}{cccc}-7&2&22&1\\3&-1&0&1\\-3&2&5&0\end{array}}\right]\dots(ii)$$

Dari persamaan \((i)\) dan \((ii)\), ditarik kesimpulan bila kita mengenakan OBE \(3R_{3}+R_{1}\rightarrow R_{1}\) pada matriks A maka hasilnya akan sama dengan hasil kali \(EA\). Jadi pernyataan \(A \xrightarrow[ ]{3R_{3}+R_{1}\rightarrow R_{1}} EA\) bernilai benar.

Tambahan

Mari kita berpikir bersama, sebuah OBE yang dikenakan pada matriks satuan \(I\) dapat menghasilkan matriks elementer \(E\).

Lalu apakah ada OBE yang jika dikenakan pada matriks \(E\) akan menghasilkan matriks satuan \(I\) ?

Jawabannya adalah ada!

Misalkan jika \(E\) kita peroleh dengan menukarkan baris ke-\(i\) dengan baris ke-\(j\) pada \(I\), maka kita dapat mencari matriks \(I\) jika kita menukarkan baris ke-\(j\) dengan baris ke-\(i\) pada \(E\).

Untuk operasi lainnya simak tabel berikut :

OBE pada \(I\) yang menghasilkan \(E\)OBE pada \(E\) yang menghasilkan \(I\)
Mempertukarkan baris ke-\(i\) dengan baris ke-\(j\), dinotasikan : \(R_{i} \leftrightarrow R_{j}\)Mempertukarkan baris ke-\(j\) dengan baris ke-\(i\), dinotasikan : \(R_{j} \leftrightarrow R_{i}\)
Mengalikan baris ke-\(i\) dengan skalar \(k\), \(k\neq 0\) dan dinotasikan : \(kR_{i} \rightarrow R_{i}\)Mengalikan baris ke-\(i\) dengan skalar \(\frac{1}{k}\), dinotasikan : \(\frac{1}{k}R_{i} \rightarrow R_{i}\)
Menambahkan hasil kali baris ke-\(i\) dengan skalar \(k\) ke baris ke-\(j\), dinotasikan : \(kR_{i} +R_{j}\rightarrow R_{j}\)Menambahkan hasil kali baris ke-\(j\) dengan skalar \(-k\) ke baris ke-\(i\), dinotasikan : \(-kR_{j} +R_{i}\rightarrow R_{i}\)

Operasi-operasi pada ruas kanan tabel di atas dinamakan operasi inversLalu apa kegunaan dari operasi tersebut?

Operasi tersebut berguna untuk mencari invers dari suatu matriks dengan menggunakan matriks elementer. Namun kita tidak akan membahasnya di postingan ini. Untuk teorema selanjutnya juga tidak kalah penting dari teorema matriks elementer yang pertama.

Teorema 2

Setiap matriks elementer adalah invertible (dapat dibalik / mempunyai invers) dan inversnya adalah juga matriks elementer.

Maksud dari teorema 2 adalah ketika ada matriks elementer \(E_{1}\) yang dihasilkan dengan memperagakan sebuah OBE (kita namakan operasi *) pada \(I\). Kemudian kita gunakan operasi inversnya (kita namakan operasi **) pada matriks satuan \(I\) maka akan menghasilkan matriks elementer \(E_{2}\) mengingat operasi invers pada pembahasan saat ini juga merupakan operasi baris elementer.

Sehingga berdasarkan teorema 1 maka jika matriks \(E_{1}\) dikalikan dengan \(E_{2}\) maka diperoleh :

$$E_{1}E_{2}=1\dots(i)$$

Gambaran secara kasarnya yaitu efek operasi (*) akan dikenakan pada matriks \(E_{2}\) sehingga operasi (*) dan operasi (**) akan bertemu dan saling “meniadakan” dan menyisakan matriks satuan \(I\).

Kemudian dengan cara yang sama jika kita mengalikan matriks \(E_{2}\) dengan \(E_{1}\) maka juga diperoleh :

$$E_{1}E_{2}=1\dots(ii)$$

Berdasarkan sifat invers pada matriks yaitu jika \(AB =BA =I\) maka matriks \(B = A^{-1}\) atau \(A = B^{-1}\).

Sehingga berdasarkan persamaan \((i)\) dan \((ii)\) maka didapat \(E_{1}E_{2} =E_{2}E_{1} =I\) dan \(E_{1} = E_{2}^{-1}\) atau \(E_{2} = E_{1}^{-1}\). Jadi benar bahwa matriks elementer dapat dibalik dan inversnya juga merupakan matriks elementer.

Contoh :

Misalkan didefinisikan matriks elementer \(E_{1}\) dan \(E_{2}\) sebagai berikut.

$$I_{3\times 3} \xrightarrow[ ]{2R_{2}\rightarrow R_{2}} E_{1}=\left[{\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&0&0\\0&2&0\\0&0&1\end{array}}\right]$$
$$I_{3\times 3} \xrightarrow[ ]{\frac{1}{2}R_{2}\rightarrow R_{2}} E_{2}=\left[{\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}}\right]\rightarrow\left[{\begin{array}{ccc}1&0&0\\0&\frac{1}{2}&0\\0&0&1\end{array}}\right]$$

Kemudian kita kalikan keduanya sehingga didapat :

$$E_{1}E_{2}=\left[{\begin{array}{ccc}1&0&0\\0&2&0\\0&0&1\end{array}}\right]\left[{\begin{array}{ccc}1&0&0\\0&\frac{1}{2}&0\\0&0&1\end{array}}\right]=\left[{\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}}\right]$$

dan dengan cara yang sama juga diperoleh :

$$E_{2}E_{1}=\left[{\begin{array}{ccc}1&0&0\\0&\frac{1}{2}&0\\0&0&1\end{array}}\right]\left[{\begin{array}{ccc}1&0&0\\0&2&0\\0&0&1\end{array}}\right]=\left[{\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}}\right]$$

Jadi didapat \(E_{1}E_{2} =E_{2}E_{1} =I\) dan berdasarkan sifat invers pada matriks maka \(E_{1} = E_{2}^{-1}\) atau \(E_{2} = E_{1}^{-1}\).

Selanjutnya disarankan membaca : Penerapan Matriks Elementer dan Metode Mencari Invers yang Lebih Ringkas

Karena jika biasanya dalam mencari invers suatu matriks perlu mencari determinan lalu mencari transpose matriks adjoint dan seterusnya. Apalagi jika invers yang dicari dari matriks yang mempunyai jumlah baris dan kolom yang banyak pasti akan repot.